A case of intuitive reasoning

Mathematical intuition is a very dangerous and unreliable compass, even
more so in the case of multiprogramming. Recently we showed a very small
multiprogram to our class, namely the following

A: y = false B: x = false
o if y — skip fi cif @ — skip fi

These are just two straight-line programs, each consisting of just two simple
statements. Hardly anything simpler can be conceived, can’t it?

Now, for the sake of letting both components terminate, we granted the
class the possibility to add statements “x := true” to component A | as
many as they wanted and wherever they wanted. And similarly, statements
“y .= true” were allowed to be added to B .

The class did not hesitate very long. Because component B 1s “wait-
ing” for « to become true, termination of B becomes most likely if A

performs  “x := true” as often as possible. And symmetrically so for
“y :=true” . So, here is the solution:
A: x = true B: y = true
5 y = false ; @ = false
;&= true ;Y= lrue
o if y — skip fi cif @ — skip fi
;&= true ;Y= lrue

But, alas, each effort to give a genuine termination proof failed. And indeed,
there is no guarantee that both components terminate. (Let A proceed
to its if-statement. Then & A —y holds. Next, let B perform its first
“y:=1true” . Then =z A y holds. Now let A terminate. Then B gets
stuck.)

The nice thing is that, if we remove the first line from each component,
1.e. if we consider



A: y = false B: x = false

;&= true ;Y= lrue
o if y — skip fi . if & — skip fi
;&= true ;Y= lrue

then everything is okay (proof omitted here [?]).

To us, the above is a very nice example to demonstrate the intricacies
of multiprogramming to a novice audience, and to warn them to never lean
on “intuition” but on rigorous formal proofs instead.



