WFi2 - 0

A solution to a nice programming problem.

The problem to be treated has served as a problem at a written
examination some time ago. The solution to it is so nice, that it is

worth to be recorded.

Given are two integer arrays x,y{(0:46). The pair (x(i),y(i)) re-
presents the Cartesian coordinates of a point Pi in a plane (0 £ i < 47).
The arrays are such that all 47 points are different.

A robot walks from PO to P], from PI to P2, vy from P45 to P46’
and finally from P46 to PO' Tt does so in obedience to the follewing rules:

- it shall start from PO’ whilst looking towards PI;
- it shall always walk into the direction im which it is looking;
- it shall only alter its direction of looking in the points ?i,
namely by performing a clockwise rotation of o: 0 5 a < 2w
- it shall end in PO, whilst looking towards Pl'
As a consequence of this walk the robot has made a clockwise rotation which
is a multiple of 2Zw.
Write a program to compute this multiple, under the additional re-

guirement that all expressions and variasbles occurring in the program have

to be of integer or of boolean type.

A first ingpection of the problem tells us that the requested answer
does not change whenever the set of points is translated through the plane.
Only the relative position of each pair of successive points plays a role
in the determination of the answer.

Therefore we introduce the vectors u; , to be defined as B, = (Pi 5 Pi+1)
P, and P =P

Par = Po 48 = Py
The direction of looking during the walk from Pi to P

for 0 < i g 47, where

i1 Fhen equals Us e

Hence the successive directions of looking during the robot's walk are

Ygs Bps Uys enes Uggs By (=).

The clockwise votation in the point Pi towards P.

14 ROV corresponds to a

clockwise rotation from U. .y to u..

i],

WF12 -

Since in the initial state, the robot looks into the same direction
as in the final state, it is suggested to take this directon as 'reference-
direction". And then the final answer will approximately be equal to total
number of times that during rotation the robot's eye ''passes'' this reference-
direction.

A more precise, and a more manageable formulation of the problem is at hand
as soon as we realise that the answer does not change either if the set of
points is rotated inside the plane. This has as a consequence that any di-
rection 1 can be taken as a reference-direction.

If we define B(Hi) : 0 =< B(Hi) < 27 to be the angle of the clockwise ro-
tation from 1 to u., then the final answer p will have to satisfy the

equation
R: p = (Ni: O<i<47: e<3i+]) < 8(us))
When taking as an invariant relation

Oy p = (Ni: Osi<j: 8(3i+1) < SCEi)) and 0 < 3 < 47,

then the following program comes quite naturally:

jsp 1= 0,03

do j # 47 ~ if 8(ug,)) < 0w » pi=mop o+ |
1 B(Ej+E) 2 G(Hj) + skip
fi;

jo=g o+l

If the computation of 6 1is felt to be expensive, we can introduce

Qi: o = e(_t_l_j)

and take as a strengthened invariant QO and Q, , giving rise to the program

do j # 47 =+ 1;B:=e(9_j);

jsp t= 0,05 o = 8(uy)s
i+
<o =+ poi=p o+ 1

;-I-
] i+h
wm W™
v

a - skip

= h
[

]
f]

WFi2 - 2

A next remark ig that, in faet, we do not want to compute the angles
o and R, but just to compare them.
Comparing two angles « and B is fairly easy in the case that 0 < o < 7/2
and 0 < 8 < n/2, because then B8 <'a 1is equivalent to tan(8) < tan(g),
tangents being compared at the expense of two simple multiplications, when
points ave given in 2 Cartesian coordinate system.
Comparing two angles o and B 1is not so difficult either in the general
case, if we are willing to represent o and £ 1in the angle system with

bhase n/2:

o = a.n/2 + a (0 < a'< w/2)
8 b.w/2 + g? (0 < B'< w/2).

Then, the inequality B < & 1s equivalent to

h

i

b<a or (b=a and B'<a') ,
which in turn is equivalent to

b<a or (b=a and tan(B') < tan(u')).

Now the program can, with some liberal notations, be rewritten as:

juop = 0,0; a,a' :(a.v/2 + a' = 8(20) and 0 £ a'< w/2);
do j # 47 + § =i+ 1;
b,B" :(bh.w/2 + A" = S(Hj) and 0 s B'< w/2);

ifb<a or (b=2a and tan(p’') < tan(a') » p i=p +
1b>a or (b=2a and tan(B') = tan(a') + skip

fi;
,a'i= b,p’

od.

Looking for a simple initialisation of a and «', it seems attractive to

choose r = Uy as a reference~direction, but in that case the computations
of b, B' and of tan(B') < tan{a') become rather cumbersome. With respect
to these latter computations there is hardly ancther possibility than taking
one of the four coordinate-directions as reference~direction r. The choice
being immaterial (on account of symmetry), we shall select the negative y-

axis.

Now we switch back in our representation from angles to vectors,
becauge in order to compute tan(a') and tan(Bf') it is convenient to have

two vectors (ux,uy) and (vx,vy) tespectively, such that

8(ux,uy) = o' and 8(vx,vy) = 8'.

Then tan(8') < tan{e') is coded as (~vx)/{(-vy) < (~ux)/(-uy) , or
preferably as wvxtuy < uxxvy,

In order to achieve that 0 5 A'< w/2, we have to achieve that

vk £ 0 and vy < 0. In order to compute b we have to investigate
counterclockwise turns of w/2 of the vector us.

Now we obtain for b,8' :(b.n/2 + B' = S(Ej) and 0 <B'< /2)

the following piece of code:

vr,vy = x(i+1) - x(3),y(i+1) - y(j); b = 0;
b

dowvx >0 or vy =20 =+ vx,vy = -Vy,vx; t= b + 1 od,

where, in view of the original data, =x(j+1) - x(j) and y(ij+1) - v{(3i)

are the components of the wvector Ej‘

The initialisation of a and o' can become quite simple if we

succeed in finding some vector u_, such that 9(203 2 S(EWI)’ because

then R, our final result, can be rewritten as

R: p = (El' -1gi<4?: B(E}ﬁ"}) < 8(&1) Y,

and QO similarly as

QO: p = (Ni: -lsi<j: 8(31+]) < B(Hi) y and =1 s § s 47 .

We hardly have any choice, because u_; Dust be defined such that 6(u_
(HO could coincide with the negative y-axis), for instance U, = (0,
Then the initialisation of a and o' results into:

ux,uy = 0,~}; a 1= ,

To implement the extra points P47 and P48 we introduce an auxiliary

WF12 - 3

I) = 0,
1},

variable h: h = (j + 1)mod 47, by means of which we can round the arrays,

g0 to speak,

Then the ultimate program becomes:

WFi2 - &

j.h,p = ~1,0,0; ux,uy := 0,-1; a = 0;
do j #4647 = j:= 3+ 13 hOo,h := h,(j + Dmod 47;
vx,vy = x(h) - x(h0),y{(h) - y(h0)}; b := 0;
dovx >0 or vy20 = vx,vy = -vy,vx; b :=b + 1 odj
if b <a or (b
Mb>a or (b=a and vx*uy 2 ux+vy) - skip

fi;

il
m

and VX*uy < ux#vy) - p 1= p + |

uX,uy 1= vVX,vy; a :=b

A final remark concerns the fact that during the analysis we switched
our presentation f;om vectors (viz. «Ei) to angles (viz. Gfgi)), and then
back to vectors again. This may seem a needless detour, but: it has led to
the discovery that in this particular problem vectors are conveniently
represented as triples (viz. ux,uy,a), which is unusual and therefore not so
trivial. This discovery was necessary to avoid a lot of case-analysis, which,

during the examination,was hanging threateningly over our students' heads.

W.H.J. Peijen,
Eindhoven, January 6, 1978.

