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Two exercises in Func-lional pr‘ograwming_

0. Introduction

The ?oHowinS hoo programwming problems were posed to me by
Martin Rem. They seem to be en vogue awmong people who ave
interested in o\esisnin3 , so-called, systolic arrays. Here , I
shall present derivations of funchional progrowms for these
problems. These derivations are completely standard and +he
progroms thus obtained ove surprisingly simple. Tkeregfe > 1
awm -}EMP'}ed }o consider these exercises as a Conpirma-h‘on or
the effectiveness of +he techniques employed. .

1. Notational conventions

In what ?o“ows, lower case letters x and z dencle
“elements” , ie. values of unspecified type , whereas upper
case letlers X, VY, and Z dencle g‘nﬂe Sequences or
elements. Furthermore J @Y inYinite sSequence s and noturel
wn  the inital Sesmewf of ‘eng’rh n o? s will be denoted

. bﬂ sin 5 e stn s a finite sequence op lengl-k n
and. (A<:0¢c<n: (sin)ie = s.0) .

2. Polindromes

“Being o palindrome” is o properhy o? finite sequences
it s de?ineot recuvsively Qs Qollows:

Yo each sequence of \evg% ot wmost 4 is o pa\indrow.e 3
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Pi: o sequence of length ot least 2 is o palindrome i it
is of the form ocXx, where X is o palindrome .

We now consider the -Fu.nc-kon P » mapping inﬁni’re sequences
Yo infinile boolean sequences , according to the sPecificoc\-ion:

p-st = stt is a palindrome | <320 .

The problem is fo derive o funckona,\ program For p. fs
usual we shall do so by wathematical induction on <,

‘\'aking into account the structure o? Po and. P1.
Firstly , for 4:0¢4<2 we devive:

sti is a palindrome

= 1sii has length ot most 1, Po 3
true

= { de-cini-\{on ar s (Hwice) » ﬂg‘k_OS
(true : frue : T ).

(nofe 0: the gquestion wmark indicates that we have not yet

decided upon the tail of the sequence , it being irrelevont
ot this stoge , and thal we do not even wish to give it a name.)

Secondlly , ﬁ:r {: 420 we derive :

(:s)d (€+2) is a palindrome

i Ca:ed)bi+2) has length of least 2, P2 }
(0.:8):0 = (a:s)-(L+1) A sit is a palindrome
= {1 definition of : (4wiced, induction hypothesis }
a= S1 A p-s.i

{ introduckion of a funchon q , see below 3

q_-a-sv(p.s).{,

E—1

-_—
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= £ o\e?ini-‘w‘.on o?: and the ¢ drick Choice) 3
C?%: 2. qas.(psd)-Ci+2) .

Due to the question warks the fwo vesults {it nicely
fogether , such that obstrockon from 1 yields .

p-(a:s) = true:true: q.a.s.(ped) .

For elements a the runcHOn q:a woaps an Cinfinite)
sequence and o boolean sequence Yo a boolean
sequence QCcovv\ivLcj to the speciﬁca:\-ion:

g-astit = as=s1 AtiL , 430.

This is such o simple sPec'nﬁcd-ion that we leave the derivation
of 4he fo“ouoin_g progrom to the interesied reoder :

q-a-(b:s).(c:t) = a=b N c): qast .

3. Corrées

“Being a coarré “ is o properdy of (inite sequences
it is defined as follows

Co: o {inile sequence is a corvé ir it is of the form XX .

We now consider the ?wnc%-ion_ F » mMapping (inﬁni’re) Sequences
Yo boolean Sequences , Ouccom\ina to the sPecigcw\-ion:

. T / .
?-S»L = sl@x)isa coarré s £20.
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The problem is 4o derive o funchional program or §.

The wost marked difference between this exercise and the
previous one is +hat o\eginih‘on Co is vot recursive. A
rYecursive o\e-pinikon_ , however , miSH beHer suil owr veeds.
Such o de?ini'kon is not obvious : a.\#hough o. sequence og)
e form xXxX is a carré, XaX is vot a corré , due
Yo e ¢ “in the wmiddle . This observation does, however,
suggest o genernlisahion oP wrrés that mi\g‘n‘r suffice .

Ve call them k-carrds , for natural volues k. The or§33na|
carré then is a O-coarré:

G0: o ftinile sequence is a k-corré ip it is of the form
XY X , where Y has \ens% k.

Without proo? we stale thot k-corrés have the ?O“Oh)'lhﬂ

properties :

Gi: eoch Sequence of’ length k is a k-carré

G2 : %r sequences X, Y, Z, 5a+is%iv5'. X and Z have
equal lengths and: Y has length k, we have:
xeXYzZ is a k-carré =
=2 A XYz2Z is a (k+l)-caré .

Apart from this, wo Fud-\ner inventions ove required.. The
fol\oolns derivakion is , although somewhat cowmplicated by the
exira parawmeler k, quile similor o the previous ove.
Firstly , we observe that the genevalisation introduced above
calls for o similar Senem\iso.HOn of the funchion ? T.e.

we er-e :

f-.s = ¢9:0-5,



vhd9:4

where the fnchion g has sPecific:oc\-ion:

i

g-k-s-{. slCaxt+k) is a k-carré ; L20.
Secondly , we derive:

stk is o k-corré

= { stk hos length k, 61 1}

Yrue ,
= { definition oc : ond the ¢ trick 3
Chrue : 2.0 .

T‘nro\‘g , ror L:130 we derive:

s b (2% (L+1) + k) is o k-carré
= { )i Cax (i) + k) has length 2x+td+k, G2
@:5)-0 = (a:s)-(L+d +k) A st@xt+k+1) is a Ckidd-corré
= { definitwon o?‘. (wice) , induckion ‘ngpojr‘nesis 5
o=5Cl+k) A g.-lhetd.s. <
= { 85 denotes k-fold opplication of 423
o= ksl A g: Cktd) 5.4
= { using the same — coincidence | — funchion q os befove 3
q-Qa- (-l-lk-s).(g. Ck+1).8)- <
{ o\efini-\-{on o? ¢ and the 2 trick
C o ogras (H56) (g Ckea)-8)) + (L4d).

|

Cowbinaton or these resulis gives the ?o“owivy_g progvam -

$.5 g-0.5  where
ke Cars) = drue : q-a-GR%s).(q-(ket).s)  end,
g qQ 9

where the  funchion q isthe same ome as in the previous sechion,
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As o final optimisation , on additional pavameter con be
introduced to vepresent +he wolue of 1ok, ‘H'aerebj
eliminaling the expression itself from the program . Afler
s — s-\-ro.igH?onoavd_ —  program transformation the
parameter k has becowme Superfluous 5 hence, it com be
eliminated. This resulls in the ?o“o\.oing program in which
the trans{ormed version of g has been nawed W Chere,
all relevant definikions have been put together) :

F-s = h.ss
where h.(a:5).(bit)= true: q-a-t:Ch.s. (4L-1))
5 qra-bis).leitd = (azb Ac): g a-s-t

end .
The specificakon of h wow is:

Lo the = Chstd = slaxivk) is o kcarvd )
for all  s,t,k, omd <.

(remark for {ormalists : the degree of formality used in the

above delinitions of palindrome and carré has been
deliberately chosen so as fo swit my purpose.)
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