rh309 0

Representation Conversion Revisited

0 Representation Conversion

In Chapter 8 of “Programming by Calculation” I have constructed a functional program for the
conversion of binary numbers into ternary numbers. This resulted in a function ¢23 mapping
binary lists to ternary lists and an auxiliary function f. We repeat the definitions of these
functions here —in which, for technical reasons, I have renamed parameter s to r—:

23] =]
& 23 (rab) = f-b-(c237)

f-b-0 =[]
& fb-(t<ac) = f-(hdiv3)-t < hmod3
whr h = 2xc+b end

We now apply the tail-recursion theorems to transform these recursive definitions into a sequen-
tial program for the conversion of binary into ternary numbers. Moreover, apart from applying
these theorems, we will also have to choose suitable representations of the lists involved.

1 Transformation into Tail Recursion

We start with ¢28. This is a function on lists and the recursion pattern of its definition matches
the tail-recursion theorem (ii) for lists. Here function f corresponds to binary operator & in
the theorem: we may define @ by, for binary digit b and ternary list ¢:

bot = f-bt .

The tail-recursion theorem for lists now yields that:
c28-r = G-[]'r ,

provided we define function G by:

Gtl] =t
& G-t-(bpr) = G-(f-b-t)r

Next we consider the implementation of function f, that is, the implementation of the substi-
tution t:= f-b-t.

Observing that (< hmod3) is equivalent to (+ [Amod3]), such that the non-associative
operator < is replaced by the associative + , we prepare for application of the first tail-recursion
theorem, by reformulating f’s definition as follows:

f-b-[] = [0]
& f-b-(t<c) f-(hdiv3)-t + [hmod3]
whr h =2xc+b end

rh309 L

Now we can easily generalize f to a function f, F', with this specification:
F-s:b-t = fbt+ s .

Now we have f-b-t = F-[]-b-t, and thus we obtain for ¢23:

c23-r = G~[]-r
& G-t-] =t
& G-t-(bpr) = G-(F-[]'b-t)r
& FSbH = bb>s
& F-s:b-(t<ac) = F-(hmod3 > s)-(hdiv3)-t

whr h=2xc+b end

2 Array segments representing lists

A (finite) list can be represented as an array segment by enumeration of the list’s elements. This
requires, of course, that the length of that array segment equals the length of the list.

So, for list s of length n we say that array segment z[p..q) —which has length ¢—p, for
p<gq — represents s if (and only if):

g-p=n A (Vi:0<i<n:si=zx[p+i]) ,
which, in what follows, we will abbreviate to:

s=zx[p..q)
Notice that in this representation we now have that:
0. The condition s=[] amounts to p=gq.
1. The operation s:=b>s amounts to p:=p—1; z[p]:=0b .
2. The operation s:= s<b amounts to z[q]:=b; ¢:=q+1
3. The expression s-0 equals x[p].
4. The operation s:= tl-s amounts to p:=p+1 , provided s is nonempty, i.e.: p<gq.
5. Let list ¢ and integer b be such that s = t<b. Then, the operation s,c:=t,b amounts

to q:=q—-1; c:=x[q]

3 Implementation as Sequential programs

From the tail-recursive definition for function G we obtain the following sequential program
for the computation of ¢23-r0, for some given, fixed list 70, of length N . In the following
program the list parameter r is represented by an array segment z[p..N), according to this
representation invariant:

rh309 2

P0: 0<p<N Ar=uz[p..N)

That is, the elements of r are stored consecutively in array segment x[p..N). We assume
that the initial value x[0.. N) represents the whole list 0. Variable ¢ is assumed to be a list;
its representation and the implementation of ¢ := F-[]-b-t will be taken care of in the next step.

{r0=2[0..N) }
t,p:=1],0
; { invariant: PO A ¢23-70=G-t-r }
do p#N — b:=zx[p]; p:=p+1
; { 1<p<N Ar=z[p..N) }
t:=F-[]-b-t
od
{t=1¢237r0}

In terms of operations on lists, the assignment ¢:= F-[]-b-t can be implemented as follows as
a sequential program, based, of course, on the tail-recursive definition of function F'. Here we
need auxiliary names, b0 and ¢0 (say), in order to be able to distinguish the initial values of
the variables from their actual values:

{1<p<N Ar=2x[p..N) }
s, 00,0 :=[],b,t
; { invariant: F-[]-60-t0 = F-s-b-t }
do t#]] — w,c: t=ud<c
; h:=2xc+b
; S8,b,t := hmod3 > s, hdiv3, u

od

; {b>s=F-[]-b0-t0 }
t:=0bp>s
{t=F-[]-b0-t0 }

Now we are left with the choice of a suitable representation of list ¢, and of the local list
variable s that occurs in the above repetition. For this purpose we introduce an array y and
an additional variable ¢, in which list ¢ will be represented. Together with the (existing)
representation of 7 this yields the following representation invariant for the main repetition
—that is, the repetition for the computation of G —:

P1: 0<p<N Ar=z[p..N)AN0<qg At=y[0..q)
The initialization ¢:= [] now simply boils down to ¢:=0.
List variable s is a local variable of the computation of function F'. It can be conveniently

represented as a segment in the very same array y, thus:

s = ylg+l..q0+1) ,

rh309 3

where ¢0 is a name for the initial value of ¢ —that is, y[0..¢0) represents t0—.

Thus s is represented “conveniently” indeed, because it leaves exactly one array element
“unused”, namely y[¢q]. Upon termination of the repetition for the computation of F we
have t=[], that is, ¢=0, and, hence, s=y[1..q0+1). In this case the “unused” array
element is y[0]; consequently, the final assignment ¢:= b>s can now be implemented in
O(1) time, without the obligation to copy one array segment into another; this boils down to:
y[0] :=b; q:=q0+1

Thus we obtain the following sequential program for the implementation of t:= F-[]-b-t:

{0<qg ANt=y[0..q) N1<p<N Ar=x[p..N) }
q0,b0,t0 := q,b,t

; { invariant: F-[]-00-t0 = F-s-b-t AN 0<q<q0 N t=y[0..q) N s=y[qg+1..q0+1) }
do ¢#0 — ¢:=q—1; c:=y[q]
i h:=2xc+b
; y[g+1],b := hmod3, hdiv3
od
i {brs=F-[]b0-t0 Nt=[] AN s=y[l..q0+1) }
= q0+1

4 A completely in situ solution

Notice that the net effect, on variable ¢, of the two assignments ¢0:= ¢ and ¢:= g0+1 is
equivalent to ¢:= g+1. That is, the substitution ¢:= F-[]-b-t effectively increasesq¢ —which
is the length of list ¢ — by exactly 1. Because, initially we have p=¢ and because each step of
the main repetition also increases p by exactly 1, it follows that p=¢ is an invariant of the
main repetition too.

This means, however, that variable g becomes superfluous, as its role can be taken over by p.
Hence, invariant P! can now be rephrased as follows:

P2: 0<p<N Ar=z[p..N) ANt=y[0..p)

Now, however, we observe that:

e A precondition of (the program for) t:= F-[]-b-t is r = z[p..N) and the elements of
array segment z[0..p) are no longer relevant;

e In the program for ¢:= F-[]-b-t segment y[0..p) is the only part of array y that is
actually used.

Therefore, the two arrays x and y can be combined. That is, the values stored in y[0..p) can
equally well be stored in z[0..p). As a result we obtain a completely in situ solution, with the
property that array z initially contains the binary representation of the number and eventually
it will contain the ternary representation of the same number.

That is, the representation invariant for the main repetition becomes:

P3: 0<p<N Ar=z[p..N) ANt=x[0..p)

rh309 4

Carrying through these changes, combining the two program fragments, omitting the annotation,
and cleaning up the code, we obtain the following complete program for binary to ternary number
conversion:

p:=0
; do p#AN — b:=zp]; pi=p+1l; q:=p-1
; do q#0 — ¢:=q-1; c:=2x[q]
: h:=2xc+b
; x[q+1],b := hmod3, hdiv3

od

5 Exercises

0. The ternary representation resulting from c23-s not necessarily is the shortest possible:
it may contain redundant leading zeroes. Modify the functional programs for ¢23, and
subsequently also the sequential program, in such a way that c23-s equals the shortest
possible ternary list that satisfies the specification.

1. The property that the ternary representation of a number needs not be longer than its
binary representation is due to the fact that 2<3. When we convert numbers from a
representation in a larger base to one in a smaller base the resulting representation may
be longer than the input. Design a sequential program for the conversion from ternary to
binary, preferably still in situ. How do you choose the list representations in this case?

Eindhoven, 9 june 2013

Rob R. Hoogerwoord

department of mathematics and computing science
Eindhoven University of Technology

postbus 513

5600 MB Eindhoven

