rh278 0

The Thue-Morse sequence: a nice exercise

0 notational and other preliminaries

Infinite lists are constructed by means of the list constructor > (“cons”),
which has the following properties, for all b,z and for all natural i:

b>

x)-0 =0
bz

i+1) = aei

~—

—~
~—

In addition we will be using |1 (“drop one”, or “tail”) to obtain the tail of a
list, that is:

(brz)|l = =
and, hence, we also have, for all natural i:
(z|1)i = = (i+1)

The list obtained from a given list = by applying a function f to all of z’s
elements is denoted by fez; operator « (“map”) has these properties:

fe(brz) = fbp> fex
(fex)-i = f-(x1)

The latter property states that, function-wise, operator « just implements
function composition (while preserving list structure).

* * *

We will use the notion of productivity, but here I will recapitulate neither its
formal definition nor the theory about it. Informally, a function F', mapping
(so-called) listoids to listoids, is productive if its value is defined better than
its argument by at least one element. The most important property involved
is that a productive function has a unique infinite list as its fixed point. As a
simple example, function F', defined by F-x = b fex, for some given value
b and function f, is productive. Its fixed point is the infinite list whose
element at position 4 is fi-b. Generally, productivity always involves, one
way or the other, operator .

%n other contexts also called partial lists.

rh278 1

We study functional programs for infinite lists. In this note variables x,y, z
will have type Lo (Nat) —infinite list of naturals—. In what follows we will
be needing a (well-known) function zip that combines two infinite lists into a
single infinite list, according to this (element-wise) specification —for all x,y
and for natural 7—:

(0) zip-xy-(2%i) = x-i , and: zip-x-y-(2xi+1) = y-i .

This specification tells us that infinite list zip-z-y is obtained from x and y
by interleaving the elements of = and y strictly alternatingly: the elements
of x occur in zip-z-y at the even positions whereas y’s elements occur at the
odd positions.

As function zip destroys no information, it has an inverse, consisting of a
pair of functions unze (“unzip even”) and unzo (“unzip odd”), say, mapping
infinite lists to infinite lists and with these specifications —for all z and for
natural ¢—:

(1) unze-z-i = z-(2x1)
(2) unzo-z-1 = z-(2xi+1)

From these specifications we can now prove that unze and wunzo together
indeed constitute zip ’s inverse, as they satisfy, for all z,y:

(3) unze-(zip-z-y) = x , and: unzo-(zip-z-y) =y .

By means of straightforward calculations the following recursive definitions
can be derived, to satisfy the above specifications:

(4) zip-(bvz)y = bp> zipyzx
(5) unze-(b>z) = b > unzo-z ;
(6) unzo-(c>z) = wunze-z .

aside: That properties like (3) can be proved using the specifications,
that is, (0) through (2), of the functions only, instead of their defini-
tions, enhances modularity : thus, the validity of such properties does
not depend on the actual definitions for the functions; they are valid for
all definitions satisfying the specifications. In addition, proofs involving
(usually simpler) specifications may be simpler than proofs involving
(usually more complicated) definitions. This illustrates, once again,

rh278 2

the relevance of (the use of) proper specifications, also in functional
programming.

For example, we could also have defined our functions in the follow-
ing, alternative way; doing so does not bring about the need to reprove

property (3):
(7) zip-(b>x)-(c>y) = b c> zip-xy ;
(8) unze-(brcr>z) = b unze-z ;
(9) wnzo-(b>crz) = c > unzo-z

If one takes the position that a specification preferably captures the
properties one intends to need during the use of the specified object,
one may rightly argue that (3) is to preferred, as a specification of
unze and wunzo, over (1) and (2): formula (3) expresses directly
that unze and unzo constitute zip ’s inverse. An advantage of (1) and
(2), though, is that they are more explicit, which makes the derivation
of definitions (somewhat) easier.
O

1 the Thue-Morse sequence

The other day I encountered the, so-called, “Thue-Morse sequence”, which
was completely new to me. It is defined as the infinite sequence of the parities
of all natural numbers, where the parity of a natural number is defined as
the number of ones in that number’s binary representation, reduced modulo
2. Notice that, although the binary representation of a natural number is
not unique —due to the possibility of redundant leading zeroes—, a number’s
parity is unique nevertheless, because it depends on the ones in the binary
representation only.

So, with some case analysis, a number’s parity is 0 if the number of ones
in its binary representation is even, and it is 1 if the number of ones is odd.

To formalize this we introduce a function pr, of type Nat — {0,1} , map-
ping the natural numbers to their parities. A recursive definition for pr can
be formulated without much ado, directly from the recursive definition for a
natural’s binary representation —for all natural n—:

(10) pr-0 =0
(11) pr-(2+n) = prn
(12) pr-(2+n+1) = 1—prn

rh278 3

notes: Notice that 1—pr-n is just a concise encoding of (1+pr-n)mod2.
Also notice that (10) and (11) overlap one another, for the case n=0.
This is harmless because, viewed as a proposition, (11) is also true for
n=0. This directly reflects that the binary representation of natural
numbers is not unique but also that the definition of pr is insensitive
to this.

O

The Thue-Morse sequence now is the infinite list ms, say, representing func-
tion pr. Apart from the type requirement that ms be an infinite list, its
specification simply states that, viewed as functions, ms and pr are the
same; that is, for all natural ¢ they must satisfy:

(13) ms-i = pri

All by itself this specification already enables us to derive interesting properties
of ms, such as:

unze-ms-1i

{ specification (1), of unze }
ms-(2xi)
= { specification (13), of ms }
pr-(2xi)
= { definition (11), of pr }
pre1

{ specification (13), of ms }

ms-1

So, we obtain unze-ms-i = ms-i, for all natural 7, and hence, as both unze-ms
and ms are infinite lists, we conclude:

(14) unze-ms = ms

independently of how ms is defined —one may also say: independently of how
it is implemented —.

A recursive definition for ms can be derived, in a completely elementary way,
by following the recursion pattern in the definition of pr and by means of the
standard techniques for function listification:

rh278 4

ms-0

- { specification (13), of ms }

pr-0

= { definition (10), of pr }
0

= { the > -trick, where “?7” denotes a “don’t care” }
(0>7)-0 ,

which shows that, as far as the element with index 0 is concerned, ms can
be defined by an expression of the shape 0> 7 . Furthermore, we derive:

ms-(2xi+1)

= { specification (13), of ms }
pre(2xi+1)

= { definition (12), of pr }
1—pr

= { specification (13), of ms, by Induction Hypothesis }
1—ms-i

= { sectioning, preparing for factoring out (-7) }
(1=)- (ms-1)

= { + (“map”) —ms is a list— }
((1=)ems)-i

= { specification (0), of zip to obtain (2xi) back }
zip-((1=)ems)-7-(2xi)

= { the > -trick }
(7> zip-((1=)ems)-7)-(2xi+1)

and, finally, we derive for the positive even indices:

ms-(2%i+2)

= { specification (13), of ms }
pr-(2xi+2)

= { definition (11), of pr }
pr-(i+1)

{ specification (13), of ms, by Induction Hypothesis }

rh278 5

ms-(i+1)

= { | (“drop”), motivation follows }
(ms|1)-i

= { specification (0), of zip }
(zip-7-(ms|1))-(2%i+1)

= { the > -trick }
(7> zip-7-(ms[1))-(2%i+2)

Thus, by combining the three results, we obtain as recursive definition for ms:

(15) ms = 0> zip-((1—)ems)-(ms|1)

The transition, in the last derivation, from ms-(i+1) to (ms|1)-7 is necessary
so as to make the expression fit the pattern that already has emerged from
the first two derivations. These first two derivations indicate a definition for
ms of the shape:

ms = 00> zip-((1-)ems)-?7 ,

so the only freedom we are left with is the freedom to substitute a suitable
expression for 7. This sets the stage for the third derivation, and guides it.

Bij introducing an additional variable to represent ms|1 we can also en-
code ms’s definition (15) as follows:

ms = 0>z whr x = zip-((1—)ems)-z end

* X *

The above solution is not unique: by means of definition (4) of function zip ,
definition (15) of ms can be rewritten thus:

ms = zip-(0>ms[1)-((1-)ems) ,

and, indeed, this definition can also be obtained by means of a direct derivation
from ms’s specification.

2 productivity issues

From the introduction we recall the definition of function zip :

(4) zip-(bpzx)y = b zipyx .

rh278 6

As a function of its first parameter, zip is (+0) -productive, and as a function
of its second parameter, zip even is (41)-productive: the function’s value
more critically depends on = than on y.

If we now substitute (1—)ex for z and x[1 for y we obtain a function
F', say, defined thus:

Foa = zp-((1=)) (z|1)

The addition of (1-)e does not affect the function’s productivity, and the
substitution of z|1 for = reduces productivity (in the second argument) by
one. As a result, function F' is (+0) -productive.

Now, in terms of this function F', our sequence ms is a fixed point of
function G defined by:

Gz = 0> F-z .

Function G is (+1) -productive; hence, its fixed point ms is an infinite list
indeed.

3 epilogue

Although this is quite a nice exercise, the Thue-Morse sequence poses no
particular difficulties whatsoever, nor does it require any special techniques or
formalisms. The derivation of recursive definition (15) from its specification
(13) requires no more than application of the, by now standard, techniques
—like the “ > -trick” — for listification of a function. Of course, treating infinite
lists as functions on the naturals, with some additional structure, simplifies
matters (somewhat).

In addition, properties like (14) can be proved directly from the sequence’s
specification, hence, its recursive definition plays no part in this proof.

Eindhoven, 31 may 2005

Rob R. Hoogerwoord

department of mathematics and computing science
Eindhoven University of Technology

postbus 513

5600 MB Eindhoven

