rh244 0

Let’s not make things worse

0 On specifications

A common misconception in the functional programming community is that,
in functional programming, we would not need a separate formalism for spec-
ifications because, as folklore has it, one would specify a problem by writing
a “trivially correct” (and possibly very inefficient) functional program for it.
Such a trivially correct program then is considered as an executable specifica-
tion of the problem. If this program is efficient enough as well, the problem
is considered solved; otherwise, the program has to be converted into an ef-
ficient one by means of systematic program transformations. In this view,
programming boils down to writing trivially correct programs and performing
program transformations. This view is too limited, though, and it is so for at
least three reasons.

Firstly, a specification is the first formalization of a problem, and, therefore,
there is no such thing as the correctness of a specification: that a specifica-
tion really captures what was (informally) intended cannot be proved but can
only be walidated by interpretation. To make validation as easy as possible
it is important that the formalism used is as least restrictive as possible: a
programming language, by virtue of its executability, is more restrictive than
the whole of the mathematical language. (Apart from this, constructing spec-
ifications and rapid prototyping are two entirely different activities!)

Sometimes, however, writing down that trivially correct program is not a
trivial task at all, whereas writing down a specification often is much easier,
particularly so if the specification assumes the shape of an (implicit) equation
for which the program has to yield a solution; typical examples are sorting,
number conversion, and compilation.

Secondly, a specification is a formal representation of the required proper-
ties of a program, and (preferably) of nothing more. Avoiding overspecification
is difficult enough in itself, but executable specifications always are overspe-
cific, because apart from specifying a solution they also embody an algorithm
to compute it. It is much more difficult to derive, say, QuickSort by means
of program transformations from, say, Insertion Sort than to derive it from a
more neutral specification.

Thirdly, a specification is an interface, namely between the definition (or,
if you like, internal structure) of an object and its use (or external proper-

rh244

ties)?. This is important because an object’s internal structure often is more
complicated than its external properties: generally, a specification is simpler

than a definition.

simple example: With sum and len for functions mapping integer lists

(0)

d

to the sum of their elements and their lengths, we define a (real-valued)
function avg mapping a list to the average value of its elements:

avg-x = sum-x/len-x
During evaluation of awvg-x list x probably will be traversed twice,

once for the evaluation of sum-x and once for len-x. A more efficient
definition in which the list is traversed only once is:

avg- T = avgl-0-0-2
avgl-s-n-[] = s/n
avgl-s-n- (b>x) = avgl-(s+b) - (n+l)-z .

To verify that avgl-0-0-x indeed equals avg-x is easier if we use as
specification for avgi :

(Vs,n,z:: avgl-sn-x = (s+sum-z)/ (n+len-x)) ,

from which it immediately follows that: avg?-0-0-x = sum-z/len-x.
This equality now only depends on specification (0), of avgl, and not
on its recursive definition, which is only needed to verify, once and
for all, that avg! satisfies (0). In this way, separate specifications
contribute to the modularisation of correctness proofs. Modularisation
is important because it allows us to reconsider design decisions, without
the obligation to reconsider the correctness of the whole design.

(I found this example in a manuscript on functional programming,
where its authors failed to write down formula (0); as a a result, they
were not able to verify that avgl-0-0-x equals avg-z. Not surpris-
ingly, in their manuscript they did not pay any attention to program
correctness.)

YAs in mathematics, where a theorem is the interface between its proof and its use.

rh244 2

1 An example

We are interested in a formal specification of and a definition for a function
F, of type L.(Int)— Nat, such that it satisfies the informal characterisation,
for all integer lists s:

F.s = “the length of a longest segment of s containing
zeroes only”

This characterisation has three main ingredients, namely the notion of
a segment of a list, the predicate “containing zeroes only” and the notion
of the length of a list. The latter two are most easily formalised: both are
functions on lists. More precisely, the predicate is a boolean function @ (say)
and the length is a natural function L (say). Because these functions admit
several, slightly different but equivalent, definitions we shall not formulate
these definitions until we need them. In addition, both the problem and its
solution are to a large extent independent of the details of () and L.

A list y is a segment of list s if (and only if) lists x and z exist satisfying:

rHy+Hz=s,

and y is a segment satisfying () of list s if lists = and z exist satisfying:
rTHyHz=s AN Qy .

Our function F' can now be specified thus:

(1) F-s = (maxz,y,z:x+y+Hz=sAQy: Ly) ,forall s

The introduction of names () and L not only enhances modularisation
and clarity but also serves to keep the length of this formula within reasonable
limits. If we were to substitute explicit formulae for Q-y and L-y the spec-
ification of F' would become unmanageable and those parts of the following
derivations that are independent of the properties of (Q and L would become
needlessly laborious.

intermezzo: For one reason or another, you may dislike formula (1),
but it is the most concise specification for this problem I can think of.
Moreover and more importantly, in this shape the specification is most
easily wvalidated, because formula (1) is a direct formal translation of
the informal “the length of a longest segment of s containing zeroes
only”.

For the sake of contrast, here is an executable specification in the
form of an “trivially correct” functional definition:

rh244 3

(2) F = foldr-(max)-(—oc) o (Le) o filter-Q o segs

where function segs maps a list to a list (actually representing the set)
containing all segments of that list:

(3) segs = foldr-(+)-[] o (initse) o tails .

To make this “specification” complete we must still supply definitions
for the functions inits and tails, but we omit these here. To under-
stand the validity of this “specification” we must also know enough
properties of the (standard) functions foldr, filter and (s) (“map”).
All this having been said and done, this “specification” is neither triv-
ially validated nor easily constructed: it is much too complicated.

Formulae (2) and (3) are overspecific because they contain a few
premature design decisions. Instead of foldr, for instance, we might
have equally well used foldl, and in this stage of the development it
is not at all clear which is the one to be preferred. Because foldr
occurs twice we may not expect that the choice is entirely irrelevant.
(This dilemma could and, hence, should have been avoided by using
the neutral function fold , which is possible because both max and +-
are associative.)

Similarly, a segment can be defined as an initial segment of a tail
segment of the list, but also as a tail segment of an initial segment of
the list: instead of (initse) o tails we might have equally well used
(tailse) o inits, and, again, in this stage it is difficult to foresee what
the consequences of this choice will be. Nevertheless, this choice must
be made because it cannot be circumvented.

Finally, as the time complexity of (2) and (3), viewed as an exe-
cutable program, is at best O(n3), we are still left with the program-
ming task of transforming this into a more efficient definition. In view
of the complexity of this “specification” this task may be expected to
be quite laborious.

O

We now derive a recursive definition for F' by induction on (the structure of)
s; we shall introduce the relevant properties of () and L as we proceed:

F-{]
= { specification (1) of F }

rh244 4

(maxz,y,z:x+Hy+Hz=[]AQy: Ly)
= { -+ y+ 2z =[] has only one solution }
(maxz,y,2: =[] Ay=[] A 2=[] A @y: Ly)
= { one-point rule, e assuming Q-[] }
L]

Hence, we can define F-[] as L-[], provided predicate @ satisfies Q-[]. In
our case, () is the predicate “containing zeroes only” and because the empty
list certainly contains zeroes only, we may safely define:

(4) Q] = true .

Similarly, as L is the length function, we have:
G) L[l =0,

so we can define:

(6) F-[] = 0.

For non-empty lists of the shape b>s (b “cons” s) we derive:

F-(b>s)

{ specification (1) of F' }
(maxz,y,z:cHyHz=bb>s N Qy: L-y)
= { range split =[] V z#[] }

(maxy,z:y+Hz=0b>s A Q-y: L-y) max

(maxx,y,z:c#[| ANx+Hy+z=b>s N Q-y: L-y)
= { introduction of a new function G }
G- (bps) max (maxz,y,z:z#[| ANz+Hy+Hz=b>s AN Q-y: L-y)
= { z+#]]: dummy transformation z:= bz }
G- (brs) max (maxz,y,z: (bbz)Hy+Hz=0b>s AN Q-y: L-y)
= { list properties (simplification) }
G- (brs) max (maxz,y,z:zHy+Hz=sAQy: Ly)
= { specification of F', by Induction Hypothesis }
G- (brs) max F-s .

rh244)

Thus, for non-empty lists, F' can be defined recursively by:
(7) F-(brs) = G-(b>s) max F-s .

In the last derivation we have needed no further properties of) or L,
because we have only manipulated dummy x which does not occur in applica-
tions of Q or L. An experienced functional programmer probably will shorten
the derivation by performing the range split and the subsequent dummy trans-
formation in a single step. This particular dummy transformation is justified
by the property that > (“cons”) is injective, that is:

box =cby = b=cAhz=y .

The introduction of a new function G is justified by the emergence of a
new formula that is not an instance of the formula for which we are deriving
a definition. Function G has the same type as F' and its specification is:

(8) G's = (maxy,z:y+Hz=sANQy: Ly) ,foral s .

Informally, G-s is the length of a longest inital segment of s containing zeroes
only. The specification of G is similar to but simpler than F’s specification,
so we have reduced the problem to a simpler problem. As a definition for G-[]
we obtain, in very much the same way as we derived for F-[]:

@ G =0,
Furthermore, for non-empty lists of the shape bi>s we derive:

G- (b>s)
{ specification (8) of G }
(maxy,z:y+Hz=b>s AN Q-y: L-y)

= { range split y=[] V y#[], combined with y:=b>y }
(maxz:z=0b>s A Q-[]: L-[]) max
(maxy,z: (bpy) Hz=0b>s A Q- (b>y): L-(b>y))

{ one-point rule, using (4) and (5); simplification }

0 max (maxy,z:y+Hz=sAQ-(bry): L-(bry))
= { o assuming (10) and (11) }
0 max (maxy,z:y+z2=sAb=0AQy: 1+Ly)

Here we have used two new properties of () and L, namely:

rh244 6

(10) Q-(bry) = b=0 A Qy ,
and:
(11) L-(bvy) = 14 Ly .

Together with (4) and (5) these properties completely define @) and L.

The last formula in the above derivation contains a term b=0 which is
constant in the sense that it is independent of the dummies y and z. If b=0
is false the range of the quantification is empty and the whole formula collapes
to 0, whereas if b =0 is true the term may be omitted from the quantification
and we can continue the derivation:

0 max (maxy,z:y+z=8AQy:1+Ly)
= { (1+4) distributes over max }
0 max (1+ (maxy,z:y+z=sAQy: Ly))

{ specification of G, by Induction Hypothesis }
0 max (1+G-s)
= {0<1+G-s}
1+ G-s .

The last step in this derivation depends on the property that G is a natural
function (because length is a natural function). Thus, for non-empty lists G
can be defined recursively by:

(12) G-(bps) = if b0 — O
[b=0 — 1+ G-s
fi
In summary, by collecting definition fragments (6), (7), (9), and (12)
we obtain the following definitions for F' and G. By means of tupling these

definitions can be merged into a single definition, with linear time complexity;
we leave this as an exercise.

Pl = 0,

G-[] 0,
F-(brs) = G-(brs) max F-s |,
G-(bys) = if b£0 — 0

] b=0 — 1+ G-s
fi

rh244 7

2 A variation

The segments of list s can also be defined by means of the take-and-drop calcu-
lus: s|i (s “drop” @) is the tail segment of s, obtained by removing the initial
segment of length i, and s|i[j (s “drop” @ “take” j) is the initial segment
of length j of s|i. In terms of take and drop, a formula like z-+y+ 2z =s
amounts to z=s[i and y=s|i[j and z=s|i|j (for some i,5). Therefore,
function F' can also be specified by means of the take-and-drop calculus; this
requires a reference to the length of list s but yields a specification that lends
itself equally well for a calculational derivation of a recursive definition. For
list s of length n this specification reads:

F.-s = (maxi,7:0<i<i+j<n A Q-(s|i[j):])

Here I have used that L is the length function and that j is the length of the
segment involved, that is, I have used L-(s|i[j) = j. For other functions
than length we must, of course, retain the full expression L-(s|i[j) .

If an irrelevant choice between two alternatives really is unavoidable then
the pain of overspecification is lessened when the two alternatives are con-
nected by a simple calculational rule. A segment of a list can be defined either
as an initial segment of a tail segment of the list, or as a tail segment of an
initial segment of the list. That both definitions yield the same notion of seg-
ments is rendered in the take-and-drop calculus by a very simple formula; this
formula lessens the pain because it enables us to switch easily to the other
alternative if this is necessary:

sli[j = s[(i+j)|i , foralli, j: 0<i<i+j<n .

Eindhoven, 15 july 1998

Rob R. Hoogerwoord

department of mathematics and computing science
Eindhoven University of Technology

postbus 513

5600 MB Eindhoven

