A Logarithmic Implementation of Flexible Arrays

Rob R. Hoogerwoord

Eindhoven University of Technology, department of Mathematics and Computing Science,
postbus 513, 5600 MB Eindhoven, The Netherlands

Abstract. In this paper we derive an implementation of so-called flexible
arrays; a flexible array is an array whose size can be changed by adding or
removing elements at either end. By representing flexible arrays by so-called
Braun trees, we are able to implement all array operations with logarithmic
—in the size of the array— time complexity.

Braun trees can be conveniently defined in a recursive way. Therefore, we
use functional programming to derive (recursive) definitions for the functions
representing the array operations. Subsequently, we use these definitions to
derive (iterative) sequential implementations.

0 Introduction

A flexible array is an array the size of which can be changed by adding or removing
elements at either end. In 1983 W.Braun and M. Rem designed an implementation
of flexible arrays by means of balanced binary trees, which are used in such a way that
all array operations can be performed in logarithmic time. Examples of programs in
which flexible arrays are used can be found in [1].

The original presentation of this design by Braun and Rem is, however, rather
complicated [0]. In this paper we use functional programming to derive this im-
plementation in a more straightforward way. We do so in three steps. First, the
binary trees used to represent arrays are defined as a recursive data type. Second,
we derive recursive definitions for the functions implementing the array operations;
this is relatively easy. Finally, we use these definitions to derive iterative sequential
implementations of the array operations, where the Braun trees are represented by
means of nodes linked together by pointers.

1 Functional Programs

1.0 Specifications

For the sake of simplicity of presentation, we assume that all (flexible) arrays have 0
as their lower bound. Then, an array of size d,0<d, is a function of type [0,d) — A,
where A denotes the element type of the array. As usual for functions, we call [0, d)
the domain of the array and we call values of type A elements. The size of an array
is an attribute of that array’s value, not of its type —as in Pascal—. Arrays being
flexible means that different arrays may have different sizes; yet, they are all of the
same type.

We denote the size of array = by #x . The function # is one of the operations to
be implemented. Another important operation on arrays is element selection, which

rhabs :

0

is the same as function application: for array z and ¢,0<i<#=x, element z-i is the
value of z in point ¢ of its domain. Notice that an array is completely determined
by its size and its elements. In what follows we use this without explicit reference.

By means of element replacement, an array can be modified in a single point
of its domain. For array z, natural ¢,0<i<#x, and element b, we use x:4,b to
denote the array y that satisfies:

#y=#c N yi=b A (Vj:0<j<#z A j#i:yj=zj) .

Notice that element selection and replacement are only meaningful for nonempty
arrays.

The functions le and he represent the operations to extend an array with an
additional element at the lower or higher end of its domain; that is, for element b
and array z, arrays le-b-z and he-b-z are the arrays y and z that satisfy:

#y=+#z+l A y0=>b A (Vj:0<j<#c:y(j+1)=2j) , and
#z=#e+l AN z(#z)=b AN (Vj:0<j<#r:z:j=xj) .

Finally, the (partial) inverses of le and he are the functions Ir and Ar; they can
be used to remove the extreme elements of an array. For array z satisfying #z>1,
arrays Ir-z and hr-z are the arrays y and z satisfying:

#y=+#z-1 N (Vj:0<j<#y:yj=z-(j+1)) , and
#z=H#x-1 N (Vj:0<j<#z:zj=2j) .

From these specifications it follows, for instance, that Ir-(le-b-z) = ¢ and that
hr-(heb-z)=x.

1.1 Braun Trees

For the sake of the required (logarithmic) efficiency, we use a divide-and-conquer
approach. The unique array of size 0 can be represented by the unique element of a
unit type. An array z of size d+1,0<d, can be represented as follows. One element,
namely z-0, is kept separate; the remaining elements z-(j+1),0<j < d, are parti-
tioned according to the parity of j. That is, we distinguish the elements z-(2*i+1),
0<2+i<d, and the elements z-(2%1+2),0<2+i+1 < d. The ranges 0 <2*i<d and
0<2%i+1<d can be rewritten into 0<i< ddiv2+dmod2 and 0<i< ddiv2 respec-
tively. Hence, the two collections of elements thus obtained can be considered as
arrays again, of sizes ddiv2+dmod2 and ddiv2.

So, an array of size d+1 can be represented by a triple consisting of an element
and two arrays of sizes ddiv2+dmod2 and ddiv2. By applying the same trick to
these two subarrays, we obtain a recursive data-type the elements of which we call
Braun trees. We represent them by tuples, using the empty tuple () to represent
the empty array and using the triple (a,s,t) to represent the array consisting of
element a and subarrays s and ¢.

We devote the remainder of this section to a formal definition of Braun trees and
of how they represent flexible arrays. Trees are defined recursively by:

() is a tree , and
(a,s,t) is a tree , for element a and tree s,t

The fact that the two subtrees of (a, s,t) represent arrays of almost equal sizes gives
rise to trees that are balanced, which can be formalised as follows. We introduce a
predicate bal on the set of trees and we define the Braun® trees as those trees that
satisfy bal. This predicate is defined in terms of the sizes of the subtrees; therefore,
we denote the size of tree s by #s:

bal-() = true

bal-(a,s,t) = #t<#s AN #s<#t+1 A bals A balt
#() = 0

#(a’s)t> = l+#s+#t

Throughout the rest of this paper we only consider Braun trees and we use the term
“tree” for “Braun tree”.

We now define how trees represent arrays, by defining how the size and the
elements of the array depend on the tree representing it. First, we have:

the size of the array represented by tree s equals #s

Second, we denote element ¢ of the array represented by tree s by s!i; for element
a and tree s,t, the elements of the array represented by (a,s,t) are defined as
follows:

(a,s,t)10 = a
(a,s,t)1(2xi4+1) = sli , for i:0<i<#s
(a,5,t)1(2%i42) = tli , for i:0<i<#t

Notice that the domain of the array thus represented is [0,d+1), where d = #s+#t;
the tripartitioning {0} U {¢: 0<i<#s:2+i+1} U {i:0<i<#¢: 2xi+2} exactly
characterizes this domain. That trees are balanced plays a crucial role here, as is
reflected by the following property.

Property 0:
bal-(a,s,t) A #(a,s,t) =d+1 = #s=ddiv2+dmod2 A #t = ddiv2
m]

The size of a tree equals the size of the array represented by it; computing the
size of the array in this way requires a linear amount of time, though. It is possible
and sufficient to record the size of the whole array separately. As a consequence of
Property 0, it is not necessary to record the size of each subtree together with that
subtree.

As a consequence of its balance, the height of a tree is proportional to the loga-
rithm of its size. This is the reason why all operations on trees require an amount
of time that is at most logarithmic in the size of the tree.

® We use the term “Braun tree” because “balanced” is too general a notion here: Braun
trees are trees that are so neatly balanced that they admit the operation of element
selection, as defined in the next paragraph.

1.2 Element Selection and Replacement

In the previous section we have defined element selection. This definition is recursive
and it can be considered as a (functional) program right away. We repeat it here:

(a,s,t)10 = a
{a,8,t) ! (2xi+1) = sl | for i:0<i<#s
(a,s,t)1(2%i+2) = tli , for i:0<i<#t¢

Element replacement is so similar to element selection that there is hardly any-
thing to derive; the difference lies only in the value produced:

(a,s,t):0,b (b, s,t)
(a,s,t) : (2%i+1),b = (a,(s:5,b),t) , for i:0<i<#s
(a,s,t) : (2%i+2),b (a, s, (t:4,b)) , for i:0<i<#t

1.3 Intermezzo on Bag Insertions

Arrays as well as trees can be considered as (representations of) bags of elements.
In terms of bags, the two array extension operations, le and he, both boil down to
insertion of an element into a bag. To separate our concerns, we first investigate bag
insertion in isolation. ~

We denote the bag represented by tree s by [s]; a recursive definition for
function [[-] is—where {} denotes the empty bag'and + denotes bag summation— :

[O] = {}
[{a,5,8)] = {a}+[s]+[¢]

We now derive definitions for a function ins, where for element b and tree s the
tree ins-b-s is a solution of the equation! (with unknown u):

u: [ul] = {6} +[s] A balu

We use the first conjunct of this equation to guide our derivation, whereas the
second conjunct remains as an a posteriori proof obligation. By induction over the
size of the trees we derive, starting with the case that s is the empty tree:

[ul = {8} +[0)]
{ {} is the identity of +; definition of -] }
[u] = {6}+00O1+101
{ definition of [-] }
[l =0®0,)]
< { Leibniz }
u=(b(),() -

! The word “equation” is used here for arbitrary predicates, not just equalities.

ta

The first step of this derivation may look like a rabbit, but it is not: the only way
to solve an equation of the form u: [u]=F is to transform E into an expression
of the form [F] and then to apply “Leibniz”, as we did in the last step. In view
of the definition of [[-] and the occurrence of {b}, the only thing we can do is to
work towards a formula of the shape [(b,7,7)] .

Notice that in the above derivation in all steps except the last one, only the right-
hand side of the equality is manipulated. In order to avoid the continued rewriting
of the constant left-hand side, we shall carry out the calculation with the right-hand
expression only. That is, in order to solve an equation of the form u: fu=F, we
transform E into an equivalent expression f-F' in isolation, after which we conclude
that F' is a solution of the equation.

For the composite tree (a,s,t) we derive, in the same “goal-driven” way:

{6} +[(a,s,8)]
{ definition of -] }
{o} +{a} +[s1+0t]
{ specification of ins, by induction hypothesis (see below) }
{b} +[ins-a-s]+[t]
{ definition of -] }
[(b,ins-a-s,t)] .

The second step of this derivation represents a choice out of many possibilities;
because bag summation is symmetric and associative, we have 8 possibilities here:
a and b may be interchanged, s and ¢t may be interchanged, and the recursive
application of ins may be taken as the “right” or as the “left” subtree in the resulting
tree. Thus, we obtain 8 different definitions for a function ins satisfying the first
conjunct of the above specification.

Regarding the remaining proof obligation we observe that, by the definition of
bal, bal-(b,(),()) holds. For the 8 alternatives a simple- calculation reveals that,
generally, bal-(a, s,t) = bal-u only holds when s and ¢ satisfy an additional precon-
dition, as follows —notice that we need write down 4 cases only, since the relative
positions of a and b are irrelevant—:

bal-(a,s,t) = bal-(b,ins-a-s,t) , if #s=4#t
bal-(a,s,t) = bal-(b,ins-at,s) , if true
bal-(a,s,t) = bal-(b,s, insat) , if #s=#i+1
bal-(a,s,t) = bal-(b,t, ins-a-s) , if false

Apparently, the last alternative is never useful; thus, only 6 out of the 8 alter-
natives can be used when the trees are to remain balanced. As for the sizes of the
trees, ins has the following property.

Property 1: for all b and s we have #(ins-b-s) = #s+1
[}

The definitions we shall derive for the array extension operations turn out to
correspond to some of the recursive schemes discussed here. That is, these operations
are refinements of the above functions ins. As a consequence, we have done away
with the proof obligations regarding the size and the balance of the trees.

1.4 Low Extension and Removal

We recall the specification of functon le, but now reformulated in terms of trees.
For element b and tree s, the value le-b-s is the tree u satisfying:

#u=#s+l A ul0=b A (Vj:0<j<#s:ul(j+1)=slj) .

According to the analysis in the previous section, we have only one option for le-b-() ;
fortunately, it satisfies all requirements. So, we define:

leb-() = (b,(),()) -

For the composite tree (a,s,t) of size d+1, the value le-b-(a, s,t) is the tree u
satisfying:

#u=d+2 A ul0=0b A (Vj:0<j<d+1:ul(j+1)={(a,s,t)lj) .

The term (a,s,t)!j and the definition of element selection suggest a 3-way case
analysis in the range 0< j<d+1; so, using the definition of !, we rewrite this as:

H#u=d+2 A ul0=b A ull=a A
(Vi:0<i<#s:ul(2%i+2)=s%) A (Vi:0<i<#t:u!l(2xi+3)=th) .

This provides an explicit definition of the elements of u in terms of a,b,s,t. In
view, again, of the definition of !, and observing that u will be a composite tree, we
are forced to distinguish between w!0, u!(2%i+1), and u!(2xi+2). By comparing
this with the above requirement we conclude that we must choose u = (b, v, s) , where
v is the tree satisfying:

#v=#t+1 A vI0=a A (Vi:0<i<#t:o!(i+l)=tl) .

This specification of v is precisely the specification of the tree le-a-t; because ¢
is smaller than (a,s,t) we may use this recursive application of le. Thus we obtain
the following definition for le:

le-b-() (6, (), (N
le-b-(a,s,t) = (b, leat,s)

This definition corresponds to one of the alternatives for bag insertion discussed
in the previous section; as already stated there, this definition also satisfies the
requirements regarding the size and the balance of the resulting tree.

Finally, we recall the specification of the function Ir, reformulated in terms of
trees. For composite tree s the value Ir-s is the tree u that satisfies:

#u=#s-1 AN (Vj:0<j<#u:ulj=sl(j+1)) .

Using that Ir-(le-b-s) = s, we obtain from the above definition for /e the following
definition for Ir, by means of “program inversion”. The verification that this defini-
tion indeed satisfies the specification requires a calculation very much like the above
derivation for le.

Ir'(“? ()1 ())

Ir-(a,s,t)

)
(810,¢, Irs) , for s:s#()

1.5 High Extension and Removal

We recall the specification of function he, now reformulated in terms of trees. For
element b and tree s, the value he-b-s is the tree u satisfying:

#u=H#s+1 A ul(#s)=b A (Vj:0<j<#s:ulj=slj) .
As in the previous section, the only possible definition for he-b-() is:

he-b-() = (b,(),()) .

For the composite tree (a,s,t) we observe —calculation omitted— that the first
and the third conjuncts of the above specification can be met both by:

he-b-(a,s,t) = (a, he-b-s,t) , and by:
he-b-{(a,s,t) = (a, s, hebt) .

To investigate which one we need, we try to prove the second conjunct of the spec-
ification, where we assume #(a,s,t) = d+1; recall that then #s = ddiv2+dmod2
and #t = ddiv2. For the first alternative to satisfy the second conjunct, we need:

(a, heb-s,t)!(d+1)

{ assume d to be even, set d=2xe; definition of ! }
he-b-s'e

{ d=2x*e, so #s=e; specification of he, by ind.hyp. }
b .

Il

So, the expression (a, he-b-s,t) satisfies the specification if d is even, provided
that we also have bal-(a, he-b-s,t) ; the condition for this is #s=#t, which is
equivalent to d being even.

Similarly, we can derive that the other expression, (a, s, he-b-t), satisfies the
specification if d is odd; in that case we have #s=4#1t+1, which is exactly the
condition for bal-(a, s, heb-t).

Thus, we obtain the following definition for he:

he-b-(a,s,t) if dmod2=0 — (a, heb-s,t)
] dmod2#0 — (a,s, heb-t)
fi where d = #(a,s,t)—1 end

N’

To allow for logarithmic computation times, the value #(a,s,t) occurring in this
definition must not be computed but must be supplied as an additional parameter
instead. By Property 0 this is possible.

Finally, we recall the specification of the function hr, reformulated in terms of
trees. For composite tree s the value hr-s is the tree u that satisfies:

#u=+#s-1 AN (Vj:0<j<#u:ulj=slj) .

Using that hr-(he-b-s) = s, we can derive the following definition for hr from the
above one for he, again by program inversion:

hr{a, (), ()) = ()
hr(a,s,t) = if dmod2=0 — (a, hrs,t)
[dmod2#0 — (a, s, hrt)

fi where d = #(a,s,t)—2 end , for s:5#()

1.6 Summary of the Functional Programs

(a,s,t)10
(a,s,t) 1 (2%i+1)
(a,s,t)!(2%i+2)

a
sli , for i:0<i<#s
thi , for 1:0<i<#t

(b, s,t)
(a, (s:4,b),t) , for i:0<i<#s
(a,s, (t:4,b)) , for i:0<i<#t

(a,s,t):0,b
(a,s,t) : (2%i+1),b
(a,s,t) : (2%i4+2),b

le-b-() = (6,(), ()

leb-{a,s,t) = (b,leat,s)

Ir'(“:()’(» = <

Ir{a,s,t) = (s10,¢,lrs) , for s:s#()

peb) = (b0, 0) |

he-b-(a,s,t) = if dmod2=0 — (a, hebs,t)
[dmod2 #0 — (a,s, hebt)
fi where d = #(a,s,t)—~1 end

hr'(a’O’()) = () v

hr(a,s,t) = if dmod2=0 — (a, hrs,t)

 dmod2#0 — (a,s, hrt)
fi where d = #(a,s,t)—2 end , for s:s#()

2 Sequential Implementations

In this section we derive sequential implementations from the recursive function
definitions in the previous section. We represent trees by data structures built from
smaller units called nodes, which are linked together by means of pointers. For this
purpose we use a program notation that is a mixture of guarded commands and
Pascal.

Before doing so, however, we explain the techniques used for this transformation
by means of a simple example. Readers who are sufficiently familiar with techniques
for pointer manipulation and recursion elimination may wish to skip the next sub-
section at first reading.

2.0 A Few Simple Transformation Techniques

This subsection consists of two parts. First, we present two (well-known) instances
of how tail-recursive definitions can be transformed into equivalent non-recursive
programs. Second, we illustrate how a simple function on lists, namely list catenation,
can be implemented as a sequential program.

* * *

We consider the following tail-recursive definition of a function F':

Fz = if -bzx — fuz
I bz — F(gz)
fi

From this definition we obtain the following iterative, sequential program for the
computation of, say, F-X . The correctness of this program follows from the invari-
ance of F':X =Fug:

z:=X

; do bz — z:=g-2 od
; ri=fx

{T=F'X}

Next, we consider the following tail-recursive procedure P, in which z is as-
sumed to be a value parameter:

procedure P(z)

=|[if =bx — S
0 bz — Si; Pgx)
fi

Il

This procedure can be transformed into the following equivalent non-recursive one:

procedure P(z)

=|[do bz — S;; z:=g-z od
5 So
Il

N .

If we wish to get rid of the procedure altogether, cach call P(X) may be replaced
by the following program fragment; we call this unfolding P(X) :

|[var z;
z:=X
;do bz — S1; 2:=g-¢ od
5 So
1l

* * *

We consider the function f that maps two lists onto their catenation, defined re-
cursively as follows:

f-13~y= if :L‘=[] — Yy
|] 1’#[] — hd-z cons f.(tl.a;).y
fi

The first step towards a sequential implementation is to recode this definition as a
procedure definition; the reason for using a result parameter for the function result
will become clear later:

procedure Py(z,y; result 2)

—|[{post: z = fay}
var h;
if =[] - z:=y
[l .’B#[] d PO(tlma Yy, h)

; 2:= hd-z cons h
fi
|

In the second step we introduce the representation of lists by means of nodes and
pointers. A list is represented by a pointer; a pointer is either nil, or a reference to
a node —Pascal: a record— consisting of an element and a pointer. The value nil
has as its only property that it differs from all pointer values referring to nodes. By
means of a call of the standard procedure new(p) , pointer variable p is assigned
a value that differs from nil and that differs from all pointer values “currently in
use”: we call such a pointer value, and the node referred to by it, fresh.

The type definitions needed to define this data structure formally are:

type listp = pointer to node ;
node = (hd:element ; tl:listp)

For p a pointer of type listp and p#nil, we use pl to denote the node to which p

refers. We denote the two components of this node by pl-hd and pl-tl; that is, we

use the Pascal convention of field selectors to identify the components of a pair. As

in Pascal, we admit and shall use assignments to individual components of nodes.
A pointer p represents a list [p], say, as follows:

[nil] = [
[p] = pl-hd cons [p1-tl] , for p:p#nil

R

(The use of nil to represent the (one and only) empty list is somewhat opportunistic,
but it simplifies things a little.)

By incorporation of this list representation we obtain from the above procedure
Py our next version; notice that [p]=[] = p=nil :

procedure P;(p,q; resultr)
= |[{post: [r] = f-[r][q]}
var h;
if p=nil - r:=¢q
0 p#nil — Pi(pl-tl, ¢, h)
; new(r)
) TT = (pThd) h)
fi
1l

Procedure P; entails an important design decision. In this procedure the only
assignment to values of type node is the assigment to r{, which is a fresh node. As
a result, existing nodes are not modified. Generally, if the value of a node, once it has
been created and initialised, is never changed, then this node may be freely shared
among different data structures. If such a node contains pointers to other nodes,
then the “never change” condition must also hold for all nodes that are reachable
from this node. By building data structures in this way, the use of sharing saves
both storage space and computation time. For example, a list assignment can now
be implemented by copying a pointer only, which is an O(1) operation, instead of
by copying the whole list. As a result, the two lists are represented in storage by the
same data structure as long as they remain equal. In procedure P;, for instance,
we have used the pointer assignment 7:= ¢ to implement the list assignment z:=y
from procedure Py. The price to be paid for this flexibility is that efficient storage
management involves some form of garbage collection.

Aside: As a matter of fact, sharing is possible when, for every pointer p represent-
ing a list, the value [p] is never changed. This requirement is weaker than
the requirement that p7 is never changed. That is, nodes may be overwritten
as long they still represent the same abstract values —in our case: lists— . For
example, node overwriting is frequently used in graph-reduction machines. In
this paper, we can live with the stricter regime.

m}

In the third step we employ the possibility to use assignments to individual
components of nodes, to rearrange the order of the assignments in such a way that
the procedure becomes tail-recursive. Thus, we obtain:

procedure Pa(p, q; resultr)
=|[{post: [r] = f-[p]-[a]}
if p=nil - r:=gq
[p#nil — new(r)
; 7T-hd ;= pl-hd
i
1l

Procedure P, is tail-recursive but it still contains a result parameter; the trans-
formation into iterative form discussed in the beginning of this subsection is only
applicable to procedures with value parameters only. Result parameter r may be
turned into a value parameter, provided that we remove all assignments to r from
the procedure. (Notice that assignments to r{ are not assignments to r.) The assign-
ment r:= q can be removed by the introduction of an additional procedure Ps that
is identical to P, but with its precondition strengthened with p# nil . This requires,
of course, that the case p=nil be dealt with separately. Similarly, the assignment
new(r) can be eliminated by strengthening the precondition of P; even further,
namely with “r is fresh” . Thus, we obtain:

procedure Py(p, g; resultr)
= |[{post: [r] = f-[p]-[4]}
if p=nil - r:=g¢q
0 p#nil — new(r)
{p#nil A “ris fresh” }
; Ps(p,gq,7)
fi
1l

procedure Ps(p,q,r)
= |[{ pre: p#nil A “ris fresh” }
{post: [r] = f-[p]-[ql}
s if pTtl=nil — rtl:=gq
0 pl-tl#nil — new(rf-tl)
fi
Il

Finally, if we now distribute the assignment 71-hd := p1-hd over the alternatives of
the succeeding selection statement, procedure P; can be transformed into iterative
form; by unfolding its one and only call, P53 can be eliminated altogether. This yields
our final, iterative implementation of list catenation:

procedure P4(p,q; resultr)
= |[{post: [r] = f[p]-[q]}
var h;
if p=nil - r:=g¢
0 p#nil — new(r) ; h:i=r
{invariant: p#nil A “h is fresh” }
; do pl-tl#nil — h1-hd := pl-hd
; new(h1-tl)
; pyho=pldl, AT-U
od
; h1:=(pl-hd, q)
fi
1l

2.1 Selection and Replacement

We represent trees by means of data structures composed from nodes and pointers.
A tree is represented by a pointer; a pointer is either nil or a pointer to a node
consisting of an element and 2 pointers. The value nil has as its only property that
it differs from all pointer values referring to nodes. By means of a call of the standard
procedure new(p), pointer variable p is assigned a value that differs from nil and
that differs from all pointer values “currently in use”: we call such a pointer value,
and the node referred to by it, fresh.

Assignments to nodes will be restricted to fresh nodes; as a result, the values
of existing nodes will never be changed and we may employ node sharing. (See the
previous subsection, for a slightly more elaborate discussion of node sharing.)

The type definitions needed to define the data structure formally are:

type treep = pointer to node ;
node = (a:element; s,t:listp)

For p a pointer of type treep and p# nil, we use p| to denote the node to which p
refers. We denote the three components of this node by pl-a, pl-s, and p]-t . We
admit and shall use assignments to individual components of nodes.

A pointer p represents a tree [p], say, as follows:

[nil] = ()
[r] (pl-a, [p1-s], [p1-t]) , for p:p#nil

The definition of element selection is tail-recursive. Such a definition can be trans-
formed into an iterative program in a straightforward way. Next, the tree operations
in terms of tuples are recoded in terms of node and pointer operations. Thus, we
obtain the following program; to make verification of this transformation somewhat
easier, we repeat the definition of element selection here with some of the syntactic
sugar —the parameter patterns— removed:

uli = if i=0 — u-a
[i>0 —if jmod2=0 — u-s!(jdiv2)
[jmod2#0 — u-t!(jdiv2)
fi where j=1i—-1 end
fi

procedure EL(p,i; resulte)
=|[{ pre: 0<i<#[p]}
{ post: e = [p]!é (initial values of p,) }
doi#0 — i:=1-1
; if imod2=0 — p,i:= pl-s, idiv2
I imod2=1 — p,i:= pl-t, idiv2
fi
od
; ex=pla

12

For the implementation of element replacement, we introduce a procedure REP
with the following specification:

procedure REP(p,i,b; resultr)
= [{ pre: 0<i<#[p]}
| {post: [r] = [p]:4b}

As a first approximation, we construct the following (recursive) code from the (re-
cursive) definiton of element replacement:

procedure REP(p,i,b; resultr)
= |[var h;
if i=0 — new(r) ; r]:= (b, pl-s, pIt)
[i#0 — i:=1i-1
; if imod2=0 — REP(pl-s,idiv2,b, h)
; mew(r) ; r1:= (pla, h, plt)
[imod2=1 — REP(p]-t,idiv2,b, h)
f_ ; new(r) ; vl = (pl-a,pl-s, h)
i
fi
Il

By means of the techniques from the previous section, this procedure can be
transformed into the following iterative one:

procedure REP; (p,%,b; resultr)
= |[varh;
new(r) ; h:=r
; doi#0 — ¢:=1i-1
; if imod2=0 — hl.a :=pl-a ; hit:=plt
; new(ht-s) ; p,i,h:= pl-s,idiv2, hl-s
[imod2=1 — hl-a :=pla ; hls:=pls
; new(hl-t) ; p,i,h:= pl-t,idiv2, A1t
fi
od
“; h1:= (b, pls, p1-t)

Procedure REP; constructs a new tree that shares the majority of its nodes with
the old tree. As a result, this operation requires at most logarithmic computation
time.

2.2 Extension and Removal

The techniques used in the previous subsections can be used to derive iterative
implementations of the extension and removal operations as well. Although these
cases are slightly more complicated, this transformation offers no further surprises;

13

e

14

therefore, we only present the resulting programs. As is the case with element re-
placement, the following procedures construct, in logarithmic time, new trees that
share the majority of their nodes with the old ones.

procedure LE(p,b; resultr)
= |[var h;
new(r) ; h:=r
; dop#nil — hl-a:=b; hlt:=pls
; new(hl-s) ; p,b,h:= pl-t,pla,hls
od
; h1 = (b, nil, nil)
1l

procedure HE(p,d,b; resultr)
=|[{pre:d=#[p]}
var h;
new(r) ; h:=r
; dod#0 — d:=d-1
; if dmod2=0 — hTl-a := pl-a; hl-t:=plt
; new(hl-s) ; p,d,h:= pl-s, ddiv2, hl-s
| dmod2=1 — hl-a:=pl-a; hls:=pls
; new(hl-t) ; p,d,h == pl-t, ddiv2, htt
fi
od
; h1:= (b, nil, nil)
1l

procedure HR(p,d; resultr)
= |[{pre:d=#[p]}
var h;
if d=1 — r:=nil
0 d>1 — new(r) ; d,h:=d-2,r
; dod>2 A dmod2=0 — hl-a:=pl-a ; hit = plt
; new(hl-s)
; pyd,h:= pl-s, ddiv2—-1, hl-s
[d>2 A dmod2=1 — hl-a:=pla ; hls :=pls
; new(hl-t)
; p,d, b= plt,ddiv2—1, h1-t

od

; if d=0 — k1 := (pl-a, nil, nil)
0 d=1 — hl:= (pl-a,pls, nil)
fi

fi
Il

procedure LR(p; resultr)
= |[varh;
if pT-s =nil — r :=nil
[p1-s # nil — new(r) ; h:=r
; do pT-s1-s # nil — hf-a :=plsl-a; hifs:=plt
; new(h1) ; p,h = pl-s, Al
od
; h1 = (p1-sT-a, pT-t, nil)
fi
|

3 Concluding Remarks

The introduction of Braun trees to represent flexible arrays constitutes a major de-
sign decision. Once this decision has been taken, functional programs for the array
operations can be derived smoothly. These functional programs are compact and
provide a good starting point for the construction of a sequential, nonrecursive im-
plementation of the array operations. Although the resulting programs are nontrivial
they can be obtained by systematic transformation of the functional programs; this
requires great care but little ingenuity.

The exercise in this paper also shows that recursive data types, such as Braun
trees, can be implemented by means of nodes and pointers in a simple and system-
atic way. Notice that we have not employed an (elaborate) formal theory on the
semantics of pointer operations; nevertheless, we are convinced of the correctness
of the programs thus obtained. The programs derived in this paper employ sharing
of nodes by adhering to the “never-change-an-existing-node” discipline; it is equally
well possible to derive programs that, instead of building a new tree, modify the
existing tree by modifying nodes.

Braun trees admit several variations and embellishments. To mention a few:
instead of binary trees, k-ary trees, for some fixed k, can be used. Operations like
mod2 and div2 then become modk and divk. Larger values of k give rise to trees
of smaller height —when the size remains the same—. The price to be paid is that
storage utilisation decreases: each node now contains k pointers per array element
instead of 2. To compensate for this, it is possible to store several consecutive array
elements, instead of a single one, per node of the tree. This reduces the height of the
tree even further and improves storage utilisation (, except for very small arrays).
Note, however, that in a setting where nodes are shared, large nodes are awkward,
because of the time needed to make copies of nodes; this places an upper bound on
what can be considered as a reasonable node size.

acknowledgement

To Anne Kaldewaij and the members of the Kleine Club, for their constructive
comments on an earlier version of this paper.

45

References
[0] Braun, W., Rem, M.: A logarithmic implementation of flexible arrays. Memorandum

MR83/4, Eindhoven University of Technology (1983).

[1] Dijkstra, Edsger W.: A discipline of programming. Prentice-Hall, Englewood Cliffs
(1976).

1982.4.6
‘F"V’ MPC Oxgorc\ , Summer 1992.

This article was processed using the IATEX macro package with LLNCS style

