rh139a 0

A calculational derivation of the CASOP algorithm

Rob R. Hoogerwoord
Department of Mathematics and Computing Science
Eindhoven University of Technology
5600 MB Eindhoven
The Netherlands

abstract

A formal derivation is presented of an efficient algorithm for computing the "sums” of
all segments, of a given length, of a sequence. Here, "sums” refers to the continued
application of a binary operator of which associativity is the only known property.
Recurrence relations are used to separate two concerns, viz. characterisation of the

values to be computed and choosing the order in which these values will be computed.

keywords: program derivation, formula manipulation, recurrence relations, functional

and sequential programming.

Introduction

Let ® be an associative binary operator, let N 7 1<N, be a natural number,

and let x(i:0¢i) and y(i:0<i) be infinite sequences coupled by
(Vi:0gi: yei = x-i @x-(i+1) & - @ x-(i+N-1))

Le.,, yi is the "sum” of the elements of segment x(j:igj<i+N) .

In a recent publication J. Cooper and L. Kitchen [0] present an efficient algorithm
for the computation of sequence y for given N and x . They do not, however, explain
how they designed their algorithm and, for the alleged sake of brevity, they give only
a sketch of the algorithm’s proof of correctness. The crucial part of this sketch is a
pictorial representation [0, fig.2] of the recurrence relations that lie at the heart of
their design. Here we show that both birds --heuristics and correctness-- can be
killed by the same stone, by providing a calculational derivation of these recurrence

relations. This derivation turns out to be so short that there is hardly a point in omitting

rh139a 1

it. Finally, the code of the program can be constructed from the recurrence relations in

a straightforward way.

Derivation

A naive solution would not exploit the associativity of & ; it would require N-1
@-operations per element of y . A less naive approach is based on the observation that
successive elements of y depend on segments of x that have large subsegments in
common; hence, by avoiding recomputation of the sums of such subsegments, it should be
possible to obtain more efficient progrdms. Because in any solution segments of x with
lengths less than N will play a role, we generalise --this is a standard technique --

the specification of y ; thus we obtain function f defined by
(Vi,j:0gi<j: feiej = xei@x-(i+1) ® --- ® x-(j-1))

In terms of f sequence y is now defined by
yei = f-i-(i+N)

Moreover, f has the following properties:

(0) (Vi:ogi: feie(i+1) = x-i) .
(1) (Vijk:0gi<j<k: frick = f-ivj ® foj-k) '
Note that property (1) captures the associativity of e ; this associativity will not be
referred to anymore: the whole derivation will be carried out in terms of (0) and (1) .
Property (1) offers quite a large amount of freedom; our main problem, therefore, is
to exploit this freedom judiciously.

The following little calculation embodies the major design decision of Cooper

and Kitchen's algorithm; for i:0<i, we have:

y!

{ definition of y }
fei-(i+N)

{0<i;assume i<N<i+N: (1)}
foi.N @ f-N.(i+N)

rh139a 2

The assumption i<N<i+N is equivalentto 0<i<N . The way in which we have applied
(1) is about the simplest possible. Formulae f-i-N and f{:N-(i+N) have the nice
property that they are function applications in which one of the arguments is constant.
Hopefully, this enables us to derive simple recurrence relations for them. Moreover,
from y's definition it follows that y-0=1-0-N and y-N=f-N-(N+N) ; so, the first N+1
elements of y can be expressed in terms of f-i-N, 0<i<N, and f-N-(i+N) , 0<igN .

We now derive a recurrence relation for f-i-N, 0gi<N , as follows:

f-i-N

= { assume i <N-1, then 0gi<i+1<N: (1) }
fei(i+1) @ f-(i+1)-N

= { (0)}
x-i @ f-(i+1)-N ,

and:

f-(N-1)-N

= { (0)}
x-(N-1)

By a very similar calculation we can derive a recurrence relation for f-N-(i+N) . Thus

we obtain the following relations, which define y(i:0<igN) :

yei = fei-(i+N) , 0gigN
foi-(i+N) = f.i-N @ f:N-(i+N) , 0<i<N
foioN = xi @ f-(i#1):N , 0gi<N-1
f-(N-1)-N = x-(N-1)

f-N-(1+N) = x-N

f-N-(i+1+N)

1

f-N-(i+N) ® x-(i+N) , 0<i<N

By means of these relations the first N+1 elements of y can be computed; if
the computations are performed in the right order this requires 3% (N-1) e@-operations.
So, on the average 3x(N-1)/(N+1) e-operations are needed per element of y.
Furthermore, none of the values occurring in this computation is of any use for the
computation of y(i:N<i) ; hence, it is not surprising that this gives rise to an algorithm
in which y is computed in chunks of length N+1 . The general case, i.e. the compu-
tation of y(i:pgigp+N) , for any p, can be dealt with in the same way; this amounts to
prefixing all indices in the above formulae with p+ . This makes all formulae longer,

but not more informative, which is why we --deliberately-- did not carry out the

rh139a 3

formal derivation in full generality.

A program

Based on the recurrence relations derived in the previous section, several
programs can be constructed. Here we present one for the computation of y(i:0<igN) ,
the elements of which are computed in the order of increasing index. The recurrence
relations show that the values f:N-(i+N) can be computed "on the fly”, but that, in
order to obtain an efficient program, the values f-i:N must have been computed in
advance and stored in an array z(i:0<i<N) , say. This yields the following program (in

which z occurs as a constant):

{1<NA(Vi:0gi<N: zi=fi:N)}
y0,a,n :=2z0,xN,1
{ invariant: (Vi:0gi<n: yi=fi-(i+N)) A 1¢<ng¢N A a=fN-(n+N)
: bound: N-n
}
;don#N > { fon-(n+N) = z.n@ a A f-N-(n+1+N) =a ® x-(n+N) }

yn,a,n:=znéa,adx(ntN) ,n+1

od
{ (Vi:0gi<N: yei=fei-(i+N)) A a=f-N-(N+N) }
s yN:=a

{(Vi:0igN: yi=fei-(i+N)) } .
Initialisation of array z is straightforward; the following program does the job:

{1<N}
z-(N-1) ,n := x-(N-1) ,N-1
{ invariant: (Vi:ngi<N: zsi=fi-N) AOgn<N ; bound: n}
; don#0 » { f-(n-1):-N=x-(n-1) ® z:n } |
z:(n-1) ,n ;= x-(n-1) ®z:n,n-1
od
{(Vi:0gi<N: zei=fi-N) } .

These programs allow several interesting embellishments. It is, for instance,

rh139a 4

possible to modify them in such a way that the elements of x are inspected only once,
in the order of increasing index, during the computation of the whole sequence y . This
requires some buffering for which the same array z can be used. We leave such

embellishments as exercises to the interested reader.

Conclusion

The best order in which many values are to be computed depends on the relations
between these values. Therefore, it is a wise strategy to identify these relations before
deciding on the order of computation. The example discussed in this paper confirms
(again) that recurrence relations provide a suitable interface between these different
concerns. For example, the invariant of the program for the initialisation of z has been
obtained from its postcondition by replacing constant 0 by a variable; the choice which
constant should be replaced is enforced by the recurrence relations. In this respect, it
is somewhat surprising that the usefulness of recurrence relations seems to be under-
estimated in methodological discussions on sequential programming.

Recurrence relations are relations between the values of functions in different
points of their domains. Deriving such relations can be considered as a form of functional
programming. Thus, although the example discussed in this paper is too simple to demon-

strate this, functional programming techniques can be used in sequential programming.

reference

[o] J. Cooper, L. Kitchen
CASOP: a fast algorithm for computing the n-ary composition of a binary
associative operator
Information Processing Letters 34(1990), pp. 209-213.

(Eindhoven, 6 June 1990)

	0.pdf
	1b
	2b
	3
	4

