rh130 0

A sequel to rh129 and to EWD1061

In rh129 I gave -- as supporting evidence for the use of an explicit
operator for function application —- two different definitions of functions pair,
fst, and snd . These definitions are:

(0) pairsx-y-s = Sx-y ,

fstep = pK
snd-p = p-C

(1) pair-x-y = (y)el(:x) ,
fst = (-K) .
snd = (-C)

Here, K, C, o, and (-x) are defined by:

K-x-y = X ,
C-x-y =y '
(xoy)ez = x-(y-z2) ,
(+x)-y = yex

Functions pair, fst, snd satisfy fst-(pair-x-y)=x and snd:-(pair-x-y) =y,
for all x, y. We now derive two proofs of fst-(pair-x-y) =x in two ways,
using definition (1) and definition (0) respectively. Notice that we tacitly
use that function application is left-binding, i.e. x-y-z=(x-y)-z .

fst- (pair-x-y)
= { definition (1) of fst }
(-K)-(pair-x-y)
= { definition of (-x) with x,y « K, pair-x-y }
pair-x-y-K
= { definition (1) of pair }
((-y)e(-x))-K
{ definition of o with x,y,z « (-y),(-x),K }



rh130 1

(-y)-((-x)-K)

{ definition of (-x) with x,y «y, (-x)-K }
(+x)-K-y

{ definition of (-x) with x,y « x,K }

K.x.g
{ definition of K }

This derivation consists of 7 steps, the order of which is not completely
fixed; in the above derivation we followed the (not so bad) strategy to replace
the left-most subexpression to which one of the rules could be applied. The
symbol count -- counting each multi-letter identifier as one symbol -- for
this proof yields 9,12,7,13,13,8,5,1 (sum 68). The second proof runs as
follows:

fst-(pair-x-y)

{ definition (0) of fst with p « pair-x-y }
pair-x-y-K
{ definition (0) of pair with x,y,s « x,y,K }

K.x.g
{ definition of K }

This proof consists of 3 steps; its construction leaves us no freedom. More-
over, each of the definitions of the functions involved is used once, and that
is all. The symbol count for this proof is 9,7,5,1 (sum 22). Notice that each
formula from the second proof also occurs in the first proof.

So much for a little story that provides some more evidence for the
point made in EWD1061, namely that equational reasoning with function appli-
cations may be expected to be more efficient than reasoning with functions
themselves.



rh130 2

acknowledgement: to W.H.J. Feijen, for drawing my attention to the striking
difference between the above proofs.
a

reference
Edsger W. Dijkstra
Composition, A-calculus, and some more
EWD 1061, Austin, 1989.

a

Eindhoven, 30 november 1989

Rob Hoogerwoord

departement of mathematics and computing science
Eindhoven University of Technology



