rh129 0

Dot or juxtaposition?

About 5 years ago I adopted the convention -- which is, I think, due
to E.W. Dijkstra and W.H.J. Feijen -- to denote (function) application by an
explicit symbol, namely the infix operator - ("dot”), instead of juxtaposition.
So I write f-x instead of fx or f(x) .

In the SASL/KRC/Miranda language family application is denoted by
(unparenthesized) juxtaposition; furthermore, the practitioners of the Bird/
Meertens calculus consistently use juxtaposition for application. These simple
facts always confused me a little: is the use of an explicit symbol really better
or is it just exaggerated purism? Let me explain my confusion by giving an
argument in favour of juxtaposition first. Next, I present an observation that,
for me, settles the issue in favour of an explicit operator.

Juxtaposition saves symbols; thus, it contributes to the brevity and,
possibly, clarity of our formulae. For example, in one of my larger functional
programs 17 % of the symbols are dots. Of course, juxtaposition can be used
with only one (context-independent) meaning. It seems, therefore, wise to use
it for one of the more elementary operations. Indeed, application is a good
candidate.

Application can be considered as a binary operation, mapping a function
and an argument to a value. By using an explicit infix operator for it we
recognise that application itself is a (two-argument) function that, in some
respect, does not differ from other binary operators. We illustrate this as
follows.

For binary operator @ , say, we denote the two-argument function
represented by it by (@) , and we denote the one-argument functions obtained
by fixing one of @'s arguments by (a®) and (eb) respectively. That is,
we have:

(®)x.y = xoy |,
(a®)y = aey ,
(eb)ex = x@b , forall a,b,x,y .

This convention proves to be convenient because it enables us to consider the
standard operators as values in their own right. For example, (®) can be



rh129 1

used as argument in an application of a function that "expects” a two-argument
function for its parameter.

We now have: (-) is the function that applies functions to arguments,
(f-) is not very useful because it is equivalent to f, and (-a) is the
function that applies functions to the constant argument a . For example, if
we use s-i, for natural i, to denote the i-th element of list s then s-0
is the head element of s ; hence, the function that maps lists to their head
elements is (-0) .

As another example, let functions K and C be defined by:

Kexey = x
Cex-y

Using K and C we can now define a pair-forming function and its inverses
in two different ways -- where o denotes function composition —- :

(0)  pairx-ys = sxy ,
fSt‘p = p.K L,
snd-p = p-C

(-ylol-x) ,
(’K) )
(-C)

(1) pair-x-y
fst
snd

In both cases we have fst-(pair-x-y)=x and snd-(pair-x-y) =y . Although
in this case I prefer definition (0) to definition (1) , because the former
matches our manipulative needs better than the latter does, the greater level
of abstraction of definition (1) may sometimes be advantageous -- honesty
forces me to admit that I am still looking for a more convincing example -- .

Eindhoven, 28 november 1989

Rob Hoogerwoord

department of mathematics and computing science
Eindhoven University of Technology



