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On mathematical induction and the invariance theorem

Introduction

Roughly speaking, two kinds of mathematical theorems exist. Theorems
of the first kind serve to record the results of mathematical labour. Such
theorems may represent deep insights and their proofs may be difficult. They
are the theorems theories are made of. Theorems of the second kind are used
as building blocks in proofs of other theorems or in derivations of programs.
They need not be deep nor need their proofs be difficult. What counts is
whether they embody a meaningful separation of concerns: in order to be
useful they must contribute to the disentanglement of the mathematical
reasoning in which they are used.

In this paper we present a theorem of the second kind, a generalisation
of the principle of Mathematical Induction. It is not deep and it is probably
not new either. The idea behind it is used implicitly in many designs of proofs
and programs. We believe that this theorem indeed embodies a meaningful
separation of concerns and that its explicit formulation contributes to a better
disentanglement of the designs in which it is used. To provide some support
for this opinion we show an application of the theorem. Besides, this paper is
an exercise in proof construction.

Mathematical induction

V and C are sets. Dummies u and v range over V , whereas x
and y range over C . Predicates on V are denoted by P, and @ and R
denote predicates on C . Furthermore, < is a binary relation on C .

theorem: (0) A (1) 2 (2) , with:

(0) t:Vv-aC

(1) (AR:: (Ax::Rx) € (Ax:: Rx« (Ay:y<x:R-y)) )
(2) (AP:: (Au::P-u) ¢ (Au:: Pue (Av:tv<tu:Pv)) )
O
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Formula (1) expresses that (the universal truth of) predicates on C
may be proved by mathematical induction; this is a property of C together
with < . In most applications < is (the non-reflexive part of) a partial order;
partially ordered sets (C,<) satisfying (1) are also called well-founded
sets. The theorem states that, for well-founded sets C , predicates on V may
be proved by mathematical induction on (the values of) t, so to speak, for
any function t of type V-C .

proof of theorem: Assuming (0) A (1) , we prove, for predicate P (on V),
the term of (2) by transforming it into an instance of (1) . For this
purpose, we need a predicate R (on C) coupled to P in such a way that
this transformation is possible; postponing the choice of R, we derive:

(Au:: P-u)

{ lemma about P and C (see below), with Q-x « true }
(Ax:: Rx)
& {(1)}

(Ax:: Rxe (Ay:y<x:Ry))

= { the same lemma, with Q-x « (Ay:y<x:R.y) }
(Au:: Prue (Ay:y<tu:Ry))
{ trading (preparing for application of the lemma to R-y) }
(Au:: Pue (Ay:: Reye y<tu))
= { again the lemma, with Q-y « y<t-u and dummy renaming u<«v }
(Au:: Prue (Av:: P.v & tev<tou))
{ trading }
(Au:: Prue (Av:tev<tu:Pv))

This concludes the proof of (2) . The lemma is a generalisation of the
first step of this derivation. The lemma represents the coupling of P and
R as we need it above. By proving the lemma we construct a suitable R .

lemma: For all predicates Q@ (on C):

(Ax:: Rx« Qx) = (Au:: P.u & Q-(t-u))
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proof: The lemma must hold for all predicates Q . For the special case
that Q@ is the point-predicate (=y) , we derive:

(Ax:: Rx& x=y) = (Au:: Pu& tu=y)
{ trading }

(Ax:x=y:Rx) = (Au:tu=y:P.u)
{ one-point rule }

Ry = (Au:tu=y:P.u)
Using this as definition of R we now prove the lemma for arbitrary Q :

(Ax::R-x &« Q-x)
{ definition of R }
(Ax::(Au:tu=x:P.u) €« Q-x)
= { (¢Q-x) distributes over A }
(Ax::(Au:tu=x:Pue Qx))
= { shuffling dummies }
(Au:: (Ax:tu=x:P-u« Qx))
= { (0) : one-point rule }
(Au::P-u<« Q-(t-u))

The main calculation in the above proof consists of four steps; one
step is a (necessary) appeal to (1) , the other three steps are applications of
the lemma, needed to replace P by R or vice versa. Because (2) contains
three occurrences of P, three applications of the lemma are not surprising.
The lemma itself captures what these three replacements have in common. It
is the interface between the definition of R and its use in the proof of the
theorem. So, the lemma is a theorem of the second kind too: it is introduced
for the modularisation of the proof. Finally, we note that the theorem is
independent of the properties of < .
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The invariance theorem

In her Ph.D. thesis [0], A.J.M. van Gasteren presents a formal
derivation of a proof of (an abstract version of) the invariance theorem. After
a minor simplification, the theorem is, in the nomenclature of [0]:

theorem: For

P,@: predicates on a set V,
t : afunction of type V-C , where (C,<) is partially ordered ,
f : a predicate transformer (for predicates on V) ,

we have that [P=>Q] follows from the conjunction of

(0) (C,<) is well-founded

(2) (Ax:: [PAt=x > f-(PAt<x)])

(3) [f-Q@=>Q]

(4) f is monotonic, i.e. for all predicates X,Y on V: [X=3Y] > [{-X=>f.Y]
O

In this theorem square brackets denote universal quantification over
V.In (2) and in what follows dummies u and v range over V, and x
and y range over C .

The presence of function t and premiss (0) are indications that we
could try to prove this theorem by mathematical induction on t. ‘This even
seems to be the only way to exploit (0) . Before doing so, however, we
simplify premiss (2) -- the most complicated one -- :

(Ax:: [PAat=x 3 f.(PAt<x)])
{ definitionof [---1 }

(Ax:: (Au:: Puntu=x 3 f<(PAt<x)u))
{ shuffling dummies }

(Au:: (Ax:: PouAtu=x > f-(PAt<x)u))
{ trading }

(Au:: (Ax:teu=x:Pu 2 f-(P A t<x)u))
{ one-point rule }
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(Au:: Peu » fo(P A t<teu)eu)
{ introduction of predicate R, , see below }
(Au:: P-u » f-Ru)

The formula thus obtained is simpler than (2) : it contains quantifica-
tions over V only, whereas (2) contains quantifications over different
ranges (C and V). Instead of (2) , we therefore use (2a) and (2b) with:

(2a)  (Au::P.u 3 fRu)
(2b)  (Av::R,v = PvAtv<tu)

aside on notation: The definition of R, contains global variable u. As an
aide-mémoire, we have used subscription to indicate this: on the one hand
we do not want to leave the dependence on u implicit, on the other hand
u occurs as a constant in the following calculations. Omission of the
subscript is not without danger: it might seduce us to rewrite (2a) to
[P > fR], which is incorrect. If so desired, name R, can be avoided
by means of A-notation: R, ,=(Av::Pvatwv<tu) .

To some extent, the notation used in formula (2) is misleading:
the occurrence of t=x in the antecedent of the implication could inspire
us to eliminate x by replacing -- equals for equals -- its occurrence
in the consequent by t, which is certainly wrong. This can be discovered
by looking at the types of the variables occurring in the formula: t has
type V->C whereas x has type C . Apparently, t=x does not mean

"t equals x” but it denotes the predicate (Au::teu=x) . Similarly, A

does not denote the boolean operator but the predicate connective a
defined by (Au:: (P AQ).u = P-.uaQ-u) . Overloading A with the meaning
of A is harmless, but overloading = is not: then, what does, for
functions f and g of the same type, f=g mean? By assigning to = a
meaning that differs from equality we deny ourselves the possibility to
use Leibniz’s rule of substitution of equals for equals; according to [0]
(p.155) "such substitution is the simplest type of manipulation one can
imagine” . (In view of this, we might consider to extend the use of = and
define f=g by (Ax:: (f=g)x = (f-x=g-x) ) , for all functions f and g
of the same type, predicates or not; then, we have (f=g) =[f=g]).

Formula (2) can be rewritten in two ways: by use of an explicit
dummy for the quantification implied by [---1, as we did above, or by
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use of dummy-free notation designed for the purpose; for example:

(Ax:: [P A (=x)ot 2 f-(P A (<x)ot) 1)
(]

proof of theorem: Having decided to use mathematical induction, we derive:

[P=Q]

= { definition of [---] }
(Au:: Pu>Q.u)

& { mathematical induction on t (using (0)) }
(Au:: (P-u>Q-u) € (Av:tev<tu:P.v=Qev))

We prove this as follows:

(Av:tv<tu: PvQev)
= { trading (preparing for (2b)) }
(Av:: Pv Atv<tu 3 Qv)
{ (2b) (definition of R,) }
(Rv:: R,v =3 Qv)
3 { (4) (to introduce f's) }
(Av:: f-R, v > f-Q-v)
> { instantiation (to eliminate the quantification) }
f-R,u 3 f-Q-u
> { (2q), (3) (to get rid of the f's) }
P-u 3 Q-u

The above proof is shorter and simpler than A.J.M. van Gasteren's
proof. It may very well be that formula (2) is the culprit: it is the only
formula in the theorem in which (elements of) both V and C occur. By
rewriting it into (2a) A (2b) we have uncoupled V and C : now the whole
proof can be carried out in terms of V . The principle of generalised mathe-
matical induction takes care of the coupling, via t, of V and C . Thus, it
contributes to a better modularisation of the proof.
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