rhi11b 0

A symmetric set of efficient list operations

Rob R. Hoogerwoord
department of mathematics and computing science
Eindhoven University of Technology
P.0. Box 513, 5600 MB Eindhoven
The Netherlands

abstract

The classical set of list operations, viz. "cons”, "head”, and "tail”, can be
implemented efficiently, but it is asymmetric. We derive an implementation of a sym-
metric set of list operations, in terms of the classical ones. The new operations are
efficient too, but only in the amortized sense. We also give a short explanation of
amortized complexity. The main purpose of this paper, however, is to illustrate a style

of programming by calculation.

keywords: program derivation by calculation, functional programming, list operations,

amortized complexity

0 Introduction

In most functional-program notations the only elementary list operations are ;
("cons”), hd ("head”) and tl (”tail”). The reason for this is probably historical
(LISP). Operationally speaking, by means of these operations lists can be manipulated at
their "left ends” only. This restricted choice of operations allows an efficient imple-
mentation: they have 0(1) time complexity and they allow sharing of storage space.

In this paper we show that it is possible to implement a symmetric set of finite-
list operations efficiently; the set is symmetric in the sense that lists can be manipulated
at either end. We derive the definitions of these operations from their specifications by
calculation. In this respect, this paper also is an exercise in functional programming.

The operations have 0(1) time complexity, provided that we content ourselves with,



rhi11b 1

so-called, amortized efficiency, instead of worst-case efficiency.

The idea behind our design is simple and not new [0], but, in order to be
effective, its elaboration requires some care. The idea is to represent each list by a
pair of lists: a pair [x,y] is used to represent the list x+rev.y . Thus, each list can
be represented in many ways, and it is by judicious exploitation of this freedom that we

achieve our goal. We elaborate this in section 3.

1 Notational prelude

The set of (finite) lists is L . It consists of the empty list, which is denoted
by [], and the composite lists, which are of the form a;x , for element a and list x .
Throughout this paper, a denotes a value of the (anonymous) element type, whereas
x,Y,z denote lists. The singleton list a;[] is also denoted by [a]l . For composite

list x, the head and the tail of x are denoted by hd-x and tl-x ; i.e., we have:
hd-(a;x) = a A tlla;x) = x .
Catenation of lists is denoted by the infix operator + ; it is defined recursively by:
[J#y=y A (a;x)+#y=a;(x+y)
Catenation has nice algebraic properties: it has [1 as a left and right identity element,
and it is associative. The reverse of list x is denoted by rev.x ; it has the following
algebraic properties:
rev-[] = [1 A rev.[al = [a]l A rev-(x+y) = rev.y+rev.x

Finally, the length of list x is denoted by #x .

Many relations between these operators can be derived, such as hd.([]+y) =
hd-y , and, for composite x, hd-(x+y) = hd-x . In this paper we freely use such
properties with only vague justifications such as "list calculus” or "definition of + ”.

The time complexities of ; , hd, and tl are assumed to be 0(1) ; the time

complexities of x+y, revex , and #x are assumed to be O(#x) .



rhi11b 2

2 Amortized complexity

Without pretending generality, we introduce the notion of amortized complexity
in a form suiting our purpose.

In this section V is a set and f and t are functions of types V-V and
V-Nat respectively. For v, veV , we interpret t.v as the cost, in some meaning of
the word, of evaluation of f.v . Now suppose that we are interested in a sequence of

successive applications of f; i.e., we define a sequence x as follows:

xoeV (xo is assumed to be known) , and

Xig = f-xi , 0<i

Computation of the first n+1 elements of x then costs (Zi:0<i<n:t-xi).
If the value of this expression, as a function of n, is 0(n), then we say that the
amortized cost of each of f's applications (in sequence x ) is 0(1) . Of course, this
is so if t is 0(1) , but this is not necessary: the requirement that (Zi:0<i<n:t-xi)
is 0(n) is weaker. The introduction of amortized cost reflects our decision to be inter-

ested only in the cumulative cost of a sequence of successive operations.

For the sake of simplicity, it would be nice if we could discuss the amortized cost
of f without introduction of sequence x . This can be done as follows. We introduce a
function s, of type V-Nat, and we interpret s-v as the amortized cost of evaluation

of fov . We try to couple s and t in such a way that, for our sequence x , we have:
(Zi: 0<i<n:t-xi) < (Zi: O<i<n:s~xi) , forall n:0gn

Consequently, if s is 0(1) then the cumulative cost of computing the first n+1
elements of x indeed is 0(n) .

The following idea for a suitable coupling is --as far as we know-- due to
R.E. Tarjan [1]. We design, or invent, a function ¢, of type V-Nat, and define s as

follows:
sv = tev+ce(fev) -cev , forall v, veV .

Under the additional assumption c-x_ =0, we derive:

0]



rh111b 3

(Zi:0<i<n:’(oxi)

{ "telescope summation” }
(Si:0gi<n:tex. +CoX. = CeX.) = CeX_ + CeX
| 1+ 1 n

}

(Zi: Ogi<n: tx. +c-(f-xi) -c-xi) = X+ CeX

1 0]

= { definition of Xy

0
= { definition of s }

L Ocicn- oo ) — oo o
(Z|.0<|<n.sxi) CoX_ + CoX

N

{Osc-xn , c~x0=0}

(Zi:0<i<n: S-Xi)

What does this mean in practice? In order to prove that a function f, with given
cost function t, has amortized cost 0(1) , it suffices to design a natural function c

the so-called credit function, satisfying:

CoX, = 0 , and

tev + c.(fev) =cev is, as function of v, 0(1)

Here x  represents the initial argument --or: the initial state -~ of the computation.
The above remains valid when f represents the elements of a whole class of
functions, each having its own cost function t. In this case, one and the same credit

function must satisfy the above requirement for each pair f,t from this class.

3 Specifications

The problem to be solved is to implement an extended set of elementary list
operations in such a way that the amortized time complexity of each of these operations
is 0(1) . For this purpose, L will be represented by a set V, say, such that
the representation of lists from L by elements of V is not unique. The abstraction
function mapping V to L is denoted by [-1; i.e., [sl is the list represented by
s, for s, seV.

We use L_ and its associated functions for two purposes, namely to specify

the new list operations and to /implement them. The functions to be implemented are:



rh111b : 4

 ("left cons™) and -+ ("right cons”)
lhd (”left head”) and rhd ("right head”)
L ("left tail”) and rtl ("right tail”)

Using [-1 and the operations on L , we specify these functions as follows;

for any a and for s, seV:

Tars]l = [a]l+[s]
[s-al = [s]+[al
lhd-s = hd.[s] , [sT#I1]
rhd-s = hd-(rev.-[s]) o, [sI#I0]
[ltls] = tl-[s] , [sT#I[]
[rtt-s] = rev-(tl-(rev-[sl)) , [sI#I[]

remark: From these specifications, the types of these functions can be derived easily.

O

Moreover, we need a representation of the empty list; i.e., we must choose a
vatue [1,, [], eV, satisfying:

[0, = [

Functions (ar) and (-a), for every a, and functions ltl and rtl have
type V-V . They will be implemented in such a way that their amortized time complexity
is 0(1) . Functions lhd and rhd do not fit into this pattern: they are functions
from V to elements. This is no problem: we shall see to it that lhd and rhd have

0(1) (worst-case) time complexity.

4 Representation

Our new lists are represented by pairs of old lists; i.e., we choose V=1L xL_ .

For function [.] we choose:

[Ix,yll = x+revey .



rh111b 5

This representation leaves us no choice for the definition of [], : the only

solution of the equation x,y: [I=x+rev-y is [1,[]; hence:
[1, = [[L01]

We now derive a definition for Lhd :

lhd-[x,y]

= { specification of lhd }
hd-[ [x,yl]

= { definition of [ -1}
hd. (x+rev-y)

= { definition of + }

if x#[] - hd-x
0 x=[1- hd-(rev-y)
fi

Evaluation of hd-(rev-y) takes O(#y) time; hence, the definition thus obtained
does not have 0(1) time complexity. It does, however, have 0(1) time complexity in
the special case x#[]1 v y=[1. We could, therefore, restrict set V to the pairs [x,y]
that satisfy x#[] v y=[1. The conjunction of this restriction and its symmetric counter-
part for rhd, y#[l v x=[1, amounts to x=[] = y=[], which excludes all possible
representations of the singleton lists. Hence, the restriction x#[] v y=[1 is too strong.
We weaken it to x#[] v #ysl, or, equivalently, 1g#x v #ysl . For vy, #y<l, we

have rev-y=y ; thus, we obtain the following definition for (hd :

thd-[x,y] = if x#[] - hd-x
0 x=[1-hd-y
fi

By symmetry, we restrict set V to those pairs [x,y]l satisfying 1g#y v #x<1
as well. Together, these two restrictions define set V: V now is a subset of L xL_.

The relation defining this subset, also called the representation invariant, is Q , with:



rhi11b 6

Q: (1g#x vaygl) A (1g#y v axgl)

The definition for rhd then becomes --notice the symmetry--:
rhd-[y,x] = if x#[] - hd-x
0 x=[1- hd-g
fi .

For the derivations of definitions for the other functions we shall use the

following simple lemma.

lemma 0: Q & #x=1va#y=1
O

5 Left and right cons

The derivation of definitions for + and 4 is straightforward if we temporarily

forget the proof obligation with respect to Q . We perform these derivations in parallel:

[arlx,yll [ly,x]=al

{ specification of + } { specification of = }

lal+ [ [x,yll [ly,x]]+ [a]
= { definition of [ -1 } { definition of [ -1}

[a] + x +# rev.y y +rev.x + [a]

{ list calculus }

= { list calculus }
(a;x) #+revey y +rev.(a;x)

= { definition of [ -1} { definition of [ -1}
[la;x,yll . [ly,a;x1]

Thus, we conclude that the specifications of + and - are satisfied by:

arIx,yl = [a;x,yl ,
lyxlra = [y,a;x]



rhi11b 7

The expression [a;x,y]l, however, need not satisfy Q: Qs second conjunct
may be false, but it certainly is true if 1<#y . For the special case y=[1, we redo

the above derivation:

[a-[x,[111
{ as before , with [] for y }

[a] #+x +rev.[]
= { rev-[1=1[1, [] is the identity of + }
[al +x
= { [x,[]] satisfies Q , hence #x<1 , hence x=rev-x }
[a] + rev-x
= { definition of [ -1 }
[[lal,x]]

Expression [[al,x] satisfies Q because of lemma 0. Thus, we obtain the following

definition for + and, similarly, for - :

arlx,yl = ifyzll>la;x,yl
ly=[1->1[lal,x]
fi ,

lyxl4a = if y£ll->1[y,a;x]

ly=[1-1I[x,[all
fi

The (normal) time complexity of these definitions is 0(1) ; in order that their
amortized time complexity is 0(1) too, the credit function must be chosen such that its
value increases by a bounded amount under these operations.

6 Left and right tail

We now derive definitions for tl and rtl. These derivations do not yield

efficient definitions, but they do provide information on how the credit function can be



rh111b 8

chosen such that these definitions have 0(1) amortized time complexity.

For tl, we derive:

[ittx,yl 1

{ specification of ltl }
tl-[ [x,yl1]
{ definition of [ -1 }

tl. (x+rev.y)

Further manipulation of this formula requires distinction of the cases x#[] and x=1[1].

For the case x=[] we have:

tl- (x+rev.y)
{x=11}
tl-(rev-y)

= { #y=1 (note 0, see below) , hence tl-(rev.y) =[]}
(]

= { specification of [], }
[l 1

= { definition of [],, }
[CrL0lll

Hence, for the case x=[] we choose Itl-[x,yl=[[1,[1].
note 0: From QA x=[] it follows that #y<1 . The precondition of ltl.[x,y] is

[[x,yl1#[], which equivales x#[1 v y#[]. So, because x=I[1, we have y#I[];

hence: #y=1.

For the case x#I[] we derive:



rh111b 9

tl- (x+rev-y)

{ x#1[1, definition of + }
tlex #+ rev.y

{ definition of [-] }
[ltlx,yll

So, for the case x#I[], we may choose Ul[x,yl=[tl-x,yl, provided that this

expression satisfies Q. I.e., we must prove Q 3 Q(x,y<tl-x,y) , where <« denotes

substitution. Assuming Q we derive:

Q(x,yetlex,y)
{ definition of Q }

(1<#{lx) vay<t) A (Lgay v z(tlx) <1)
= { definition of #}

(2<#x v#y<l) A (Lg#y v axg?2)
= {Q> 1<#yvax<2)}

2<#x v #yg1
= { predicate calculus }

2<#X .

So, for the special case that x has at least 2 elements the above definition for Ll is

correct. Remains the case that x is a singleton list:

tlex + rev.y

{#x=1}

[]+rev.y

{ [1 is the identity of « }

rev.y

{ introduce u and v such that y=u+v (note 1, see below) }

rev: (u+v)

{ list calculus }



rhi11b 10

rev.v +rev-u
= { definition of [ -] }

[lrevev,ull
So, for the case #x=1 we may choose ltl-[x,y] =[rev-v,ul , where u#v=y.

note 1: The decision to split y into parts u and v is inspired by the desire to
transform rev-.y into a pair of values. By not further specifying u and v we

retain the freedom to choose the most efficient representation.

Evaluation of [revev,ul takes O(#y) time, independently of how u and v
have been chosen. In order to obtain 0(1) amortized time complexity, the value of

the credit function must decrease by an amount that is at least linear in #y . lLe.,

c-[x,yl -c:[rev-v,ul must be linear in #y , where ¢ denotes the credit function.

7 The credit function

In order not to destroy the symmetry we require c to be symmetric in x and y ;

so, c:[x,yl=c:[y,x], forall x and y. One of the simplest such functions is given by:
c-[x,yl = ax+zy .

By a simple calculation it can be shown that this definition is equivalent to:
c-[x,yl = #[[x,yll

This function is not useful, for two reasons. First, the length of the represented
list increases or decreases by just 1 under each of the list operations. So, amortized
and normal complexity coincide. Phrased differently, the idea of amortized complexity
amounts to choosing a function c¢ that allows, every now and then, more substantial
decreases of its value. Second, the second definition shows that ¢ is invariant under
changes of representation; so, this ¢ gives no heuristic guidance when we exploit the

freedom to apply changes of representation.



rhi11b 11

A function c that does satisfy these requirements is:
c.[x,yl = |ax-=2y|

We leave the proof that the value of ¢ increases by at most 1 under the left and right
cons operations as an exercise to the reader.

We now use this ¢ to complete the design of the definitions for [tl and rtl. In
the previous section we have derived that, for the special case #x=1, values u and

v must be chosen such that c-[x,yl -c-[rev-v,u]l is linear in #y . We have:

c-[x,y]
{ definition of ¢ }

| #x -2y |

{#x=1}

| #y-1|
{ definition of |+ | }

\%

#y-1

This formula is linear in #y . Hence, the decrease of c is linear in #y, provided

that we see to it that c-[rev.v,u] is not too large:

c-[rev.v,u]

{ definition of ¢ }

| #(rev.v) - #u |

{ #(rev.v) =#v }

| #v - #u |

By choosing the lengths of u and v as equal as possible we achieve c-[rev-v,ul<1 .

Therefore, we choose u and v such that:
UHV=Yy A #USHVHUHL

The pair [rev-v,ul thus specified satisfies Q ; this follows from a simple calculation.



rhi1ib 12

From this specification it also follows that #u=#ydiv2 . For any k, Ogksg#zy, the
equation u,v: u#v=y A #u=k has exactly one solution which we denote by ytk, yvk .
This solution can be computed, in 0(k) time. Therefore, we define u and v by

u=ytk and v=yvk , with k=#ydiv2 .

Putting all pieces together we obtain the following definitions for tl and its

symmetric counterpart rtl :

if #x=0->[[],[1]
0 #x=1 - [rev-(ytk),ytk] where k=#ydiv2 end

ltl-[x,y]

0 #x>2-1[tlx,yl
fi ,

rtlely,x] = if ax=0-[1[1,[]]
0 #x=1-[ytk,rev-(ytk) ] where k=#ydiv2 end
0#x>2-[y,tlx]
fi .

8 Epilogue

A formalised notion of amortized complexity turns out to be of heuristic value for
the derivation of efficient programs. In our example, we have chosen function c¢ with
no more justification than an appeal to a few general criteria. Once c¢ has been chosen,
the definitions for ltl and rtl can be completed in a rather straightforward way.

In terms of the list representation used in this paper, reversal of a list is a
trivial operation: we have rev.[[x,yll1=[[y,x]1], for all x and y . Hence, rev can
be implemented efficiently by a function Rev , defined by Rev:[x,yl=1[y,x] . Thus, list

reversal becomes an 0(1) operation.

acknowledgements

To Berry Schoenmakers, for drawing my attention to the above definition of Rev ,

and to David Gries, for his comments on an earlier version of this paper.



rhi11b

references

(o] D. Gries
The Science of Programming
(section 19.3: Efficient queues in LISP)
Springer-Verlag, New York, 1981.

[1] R.E. Tarjan

Amortized Computational Complexity
SIAM Journal on Algebraic and Discrete Methods 6, 1985, pp. 306-318.

(Eindhoven, 24 september 1991)

13



