N

An implemernitation of mutual inclusion

Rob Hoogerwoord

Department of Mathematics and Computing Science
Eindhoven University of Technology

5600 MB Eindhoven

The Netherlands

Abstract

We consider the parallel composition of two cyclic programs. The
interaction of these programs consists of a form of synchronisation
sometimes referred to as "mutual inclusion". For a given implementation
of this synchronisation by means of semaphore operations we prove the
correctness of the programs and we prove the absence of the danger of

deadlock.

Introduction

We consider the parallel composition of two programs. The interaction
of these programs consists of a form of synchronisation sometimes
referred to as "mutual inclusion", indicating that some parts of the
programs have to be executed "more or less simultaneously". We shall
not try to define what is meant by "more or less simultaneously".
Instead, we investigate the properties of two very specific, cyclic
programs that may be considered as prototype programs with respect to

mutual inclusion. The programs are:

A: a :=0 ' B: b :=0
;’gg_true -+ clicka ;'gg_true -+ clickb
{a=b} {b=al
; clicka ; clickb

i ac:z=a+1 i b :=b +1

RHG69b:0

The operations "clicka" and "clickb" both are instances of the general
operation "click"; all clicks in program A have been suffixed with "a"
and all clicks in program B have been suffixed with "b". Thus we are
enabled to consider implementations of click that are not necessarily
identical for each of the two programs. The operational interpretation

of the click operations is that any such operation in one of the programs
is eligible for execution only if one of the click operations in the
other program is also eligible for execution; in that case both clicks

are equivalent to "skip".

W.H.J. Feijen suggested the following implementation of the click
operations, using two semaphores x and vy , the initial values of

which are both zero:

clicka: V(x) ; P(y)
clickb: vV(y) ; P(x)

Following this suggestion we prove the correctness of this implementation.
Herewith, we postulate that we call any proposed implementation of
click correct if with that implementation the two prototype programs

A and B are correct in the following sense:

- the occurrence of the assertions a =b and b = a in the above
programs is justified, and:

- the programs are free from the danger of deadlock.

The decision whether or not this postulate captures the quintessence

of mutual inclusion is left to the reader; our subject is the
development of the following proofs. The first step of this development
will be the elimination of the semaphore operations by considering them

as "special" operations on integer variables.

Elimination of the semaphore opéfatiOns

One possible approach to prove properties of programs containing
semaphore operations is to define the semaphore operations as "special"

operations on integer variables and, then, to apply the Gries-Owicki

RH69b: 1

RH69Db:2

theory [0,1] to the programs thus obtained. Application of the
Gries-Owicki theory implies the formulation of a set of predicates and
invariant relations by means of which properties of the programs can

be proved. In our case, we wish to‘prove that a = b holds at a certain
place in program A and, symmetrically, that b = a holds at a certain

place in program B.

"(Note: On account of the symmetry of the programs the proof obligation
is symmetric too; hence, it suffices to prove one half of it. In the
sequel we shall exploit this symmetry as much as possible without

saying so every time).

We observe that a and b are local variables and that the interaction
of A and B consists in semaphore operations only. So, we most certainly
will need a relation between variable a and semaphores x and Y
and a relation between b and y and x . These two relations shall

be such that the equality of a and b can be derived from them. It
seems, however, difficult to find such relations because a and b

can assume arbitrarily large values whereas x and y never exceed 2.

Therefore, we take the following approach.‘

Each semaphore s is represented by a pair ps,vs of integer variables
satisfying s = vs - ps . Each operation P(s) is coded as ps := ps + 1
and each operation V(s) is coded as vs := vs + 1 . The property that
s assumes only natural values is reflected by the relation ps < vs ,
which we shall call the "semaphore invariant". In the sequel we consider
ps :=ps +1 and vs := vs + 1 'as atomic actions and we assume that
the mechanism executing the programs interleaves the atomic actions of
the programs in such a way that the semaphore invariants of all
semaphores in the programs are universally true. Application of this
transformation and addition of some assertions yields the following

programs:

A: a,vx,py := 0,0,0 { PO }
i do true + { PO } vx :==vx + 1 { P1 }
i py :==py + 1 { P2}
{ a =b 1
; vx :=vx + 1 { P3}
; py :=py + 1 { P4 }
a+1{p0}

H a :
B: obtained from A by interchanging all a and b, x and vy ,
and P and O .

For PO we make a choice; the predicates P4,P3,P2,P1 are derived

from PO by repeated application of the axiom of assigmenti

PO: 2 * a = VX A 2 x a = py
P4: 2 x a 2 = vx A 2% a+ 2 =py
P3: 2% a+2=vx A 2 %a+1=py
P2: 2 % a =vx A 2 xa+1=npy
Pl: 2%a+1=vwvx A 2 % a = py

Because { PO } vx :=vx + 1 { Pl } holds as well we conclude that

PO indeed is an invariant of program A's repetition.

Proof of correctness

We start this section by noting that, as a result of the transformation,
variables a, vx, and py are local variables of program A. Hence, PO
through P4 are trivially invariants of program B. Furthermore, each

of the predicates Pi (0 < i < 5) satisfies Pi => P , where:
P: vX - 2 <2 % a<py
Hence, P is a global invariant of both programs. Similarly, by

exploitation of the symmetry, we find that Q is a global invariant of

both programs, where:

RH69b:3

Q: vy -2<2*%Db< px

RH69b: 4

Finally, the interaction of the two programs is expressed by the

conjunction S

of the semaphore invariants:

S: px<vx A py < vy
LemmaO: (P2 A Q A S) => (a = b)
proof: Assuming that P2 A Q A S holds, we derive:
2%xa ={P2}py-1

<{s }wvw-1

<{Q }2xb+1
Hence, because a and b are integers: a < Db .
Similarly, we derive:
2*xb<{9Q } px

<{s } wx

={ P2} 2%xa+1; hence: b < a .

Combination of the two results gives: a =Db .

(End of proof).

The semaphore invariant restricts

select a "next" atomic action: an
it does not violate the semaphore

in a given state no atomic action

, ‘Absence of the danger of deadlock -

the freedom of the implementation to
atomic action may only be selected if
invariant. If, due to this restriction,

can be selected such a state is called

a deadlock state and the computation is said to suffer from deadlock.

Proving the absenceof the danger of deadlock then is proving that

deadlock states do not occur. In program A the only atomic action that

could violate S is the P operation py := py + 1, namely when py = vy .

Because P1 V P3

in program A, any deadlock state satisfies:

is a precondition of any operation py := py + 1

(PL V P3) A py = vy .

RH69Db:5

Similarly, by symmetry, deadlock states satisfy: (Q1 V Q3) A px = vx .
Finally, all states satisfy S and so do deadlock states. Hence, any

deadlock state satisfies D , where:

D: (P1 vV P3) A (Q1 V O3) Apy = vy A pPx = vk A S

‘Lemmal : - D

proof:

D = { definition of D and S, and calculus }

(P1 v P3) A (Q1 V Q3) A py = vy A px = vx

=> { both P1 and P3 imply vx = py + 1}

vk =py +1 A (Q1 VQ3) Apy =vy Apx =vx
=> { both Ql and 03 imply vy = px + 1}

px +1 A py = vy A px = vx

vk =py +1 A vy

1]

{ calculus }

Il

px =py+1 A py=px+1 A py=vyApx=vx

"{ calculus }

false.
(End of proof).

From lemmal we conclude that deadlock states do not occur. In the more
general case of two programs containing m and n P operations
respectively, m times n pairs of P operations exist that correspond

to possible deadlock states; so, a proof of the absence of deadlock
implies verification of m times n cases. In our example the 4 cases,

as represented by the 2 disjunctions in the formula: (P1 VvV P3) A (Q1 Vv 03),

have enough in common to coincide.

. 'Epilogue

The decision to divide the semaphores x and y into the pairs px,vx
and py,vy respectively was inspired by the observation that

2 ¥ a = "the number of completed P(y) operations" is an invariant of
program A's repetition. A_pleasantvconsequence of this decision is the
fact that after the transformation the two programs contain iocal

variables only, but honesty forces us to admit that this property was

not a priori intended. Another consequence of the transformation is that
all synchronisation of the programs is captured by -- one might also
say: "is hidden behind" =- the semaphore invariant, the invariance of
which is taken for granted. From our point of view, viz. the desire to
prove properties of the programs, this property is rather pleasant as

it opens the way to a remarkably simple proof. Finally, we note that

the semaphore invariant is the only knowledge about semaphores we have
used, which corresponds to the weakest possible interpretation of
semaphores. As a consequence, the argument given in this paper is
independent of any definition of semaphores one may have in mind, as

long as the semaphore invariant is satisfied.

Acknowledgements

Thanks are due to W.H.J. Feijen, for posing the problem, and to the
members of the Eindhoven Tuesday Afternoon Club, for their suggestions

and criticism with respect to the presentation.

‘References

[0] s. owicki and D. Gries: "An axiomatic proof technique for
parallel programs I", Acta Informatica 6, 319-340 (June 1976).

[17 Edsger W. Dijkstra: "Selected writings on computing: a personal
perspective", chapter: "A personal summary of the Gries-Owicki

theory". (Springer-Verlag New York Inc.,1982).

(Eindhoven, 1985.8.19)

RH69b:6

