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0 Introduction

0.0 The subject of this monagraph

By now, it is wetl-known that there is only one way to establish the
correctness of a computer program, namely by rigorous mathematical proof.
Acceptance of this fact leaves room for two possible approaches to programming,

In the first approach, o program is constructed first and its correctness
is proved afterwards. This approach has two drawbacks. First, for an arbitrary
program it may be very difficult, if not impossible, to prove its correctness.
Second, this approach sheds no light on the methodological question hout
progroms are to be designed.

In the second approach. advocated and developed by E.W. Dijkstra
[DijolDIj3] and others, the program and its proof of correciness are con-
structed simultaneously. Here, the obligation to construct o proof of correct-
ness s used as a guiding principle for the design of the program. When applied
rigorously, this approach can never give rise to incorrect programs; the worst
thing that can happen is that no program is constructed at all because the
problem is too difficult.

The latter approach turns out to be very effective. In the last 10 years,
say, it has given rise to a calculational style of programming: programs are
derived from their specifications by means of (chunks of) formula mantpulation.
These formal derivations take over the role of correctness proofs: programs
are now correct by virtue of the way they have been constructed, which
obviates the need for a posteriori correctness proofs.

Here we must add that, actually, there is no such thing as the correct-
ness of a program; we can only speak of the correctness of a program with
respect to ¢ given specification: correctness means that the program satisfies
the specification. Mathematically speaking, each pair (gpecification , program)
represents a potential theorem requiring proof, This implies that both
specification and program must be expressed in a strictly formal notation.
Programming in a calculational way can then be defined s transforming the
specification, by formal manipulations, into a program satisfying it.



In 1985 we started to investigate to whaot extent functional programs
can be designed in a calculational way, This should be possible because
functional-program natations carry less operational connotations than their
sequential counterparts  do: functional-program notations more resemble
“ordinary” mathematical formalisms than sequential-program notations do.
Moreover, we asked ourselves whether the two ways of programming dre
really different: they might very well turn out to have more in common than
one would expect at first sight.

The results of this research are laid down in thiz monograph. This
study is aboul programming, as a design activity; it is not about programming
languages, formal semantics included, nor about implementations. This implies
that we discuss semantics and implementations only as far as needed for our
purpose, namely the formulation of a set of rules for designing programs.

The programming style presented in this monograph bears a strong
resemblance with tha {ransformational style developed by R.M. Burstall and
J. Darlington [Burl[Oar0l; yet, there are a few, small but essential, differences.
First, in the Burstatl/Darlington style the starting point of a derivation always
ig a program. The goal of the transformation process is to obtain an equivalent
program that, in some aspects such as efficiency, is better than the program
one starts with. We prefer, however, to start with gpecifications that need not
be programs. Second, the Burstall/Darlington system has been designed for
mechanical program transformations. As o result, the set of transformation
rules is rather limited and the resulting programs are partially correct only.

0.1 On the functional-program notation

Although this is not a study about programming languages, this does
not mean that the notation used is irrelevant; on the contrary! Experience
shows that program derivations are at least on order of magnitude longer
than the actual code of the program derived. In order to keep the process of
forrauta manipulation manageable, conciseness of the notation is of utmost
importance [Gas). We itlustrate this by showing encodings of a, very simple,
function definition in LISP and in our program notation. This function maps a
nonempty list to its last elemaent:
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{last (lambda {x)
{cond ( (equal (cdr x) nil) (car x) )
{ t (last (edr x)) )

last-{azs) = (s=[]1>aq
0s#[] - lasts
)

The LISP version is so barogue that it prohibits efficient formal mani-
pulations. In view of this, it iz no surprise that SASL, designed by D.A. Turner
[Tur0]l, has heen so successful and so inspiring: indeed, SASL is a very
concise notation.

As o matter of fact, our own notation has been strongly ingpired by
SASL. Yet, we deliberately decided not to adopt SASL or any other exisling
program notation, We were not interested in the question "How to program in
notation X7, for whatever notation X one likes, Our goal was to develop a
calculationat pragramming styte that might be called "funstional”; the program
notation used should reflect this programming style. So, we expected that, os
time went by, the program notation would evalve in harmony with our way of
programming.

finy program notation is a mathematical formalism that also admits an
operational interpretation. By their very nature, functional-program notations
tend themselves very well to a clear separation of these two ospects. It has
been gquite a surprise to observe that so many researchers in this area ignore
this distinction. The maost marked sxample of this is the wide-spread use of
the phroses lazy language and lazy semantics (sic!), which refer to the fact
that the implementation of the notation requires lazy evaluation. We have tried
to maintein the distinction between notation and operational interpretation as
much as possible. Fortunately, thig is not difficult at all.

We use an axiomatic characterisation of the program notation. This
enables us to state exactly those properties of the notation we need, and as
littte more as possible. As a result, the program notation has not been defined
completely. We have not even strived for completeness in the mathematical



sense of the word: we do not care whether or not all irue theorems in the
system can be proved. We believe, with good reason, that the rules are
sufficiently rich to be useful for progromming.

0.2 The structure of this monograph

This monograph consists of three parta. In the first part, consisting of
chapters 1,2,3, and 5, we present a formal definition of a functional-program
notation and a theory for its use. Readers with some familiarity with SASL-like
notations and with a main interest in program design may wish to skip these
chapters. The main syntactic differences between our notation and SASL are

the use of - ("dot") for function application, the use of brackets I - 1
instead of where .- for where-clauses, the way in which case analysis is
denoted (section 2.5), the use of ; {("gons") instend of : for the list

constructor, and the + ("take") and + ("drop") operators (section 5.1).
Seclion 5.8 provides a summary of the most frequently used properties of the
list operators.

In the second part, consisting of chapters 4 and 6, we present a number
of programming techniques. The techniques presented in chapler 4 pertain
to the use of recursion, generalisation, tupling and the use of additional para-
meters, They are elementary in the sense that they are simple ond almost
always applicable, In chapter 6 we discuss o number of technigques for design-
ing programs in which lists play an important role. The use of the techniques
ig illustrated by means of small examples.

Finally, the third part consists of chapters 7 through 10. In each of
these chapters we apply the programming fechnigues developed in the second
part fo derive programs for @ programming problem. These chopters occur,
more or less, in the order of increasing difficulty of the problems, but they
are largely independent and can be read in any arder.

0.3 Notational and mathematical conventions
We uze leff-binding and right-binding instead of the usual phroses

left-associative and  righi-associative to denote parsing conventions for
binary operators, An operator @ is called left-binding if xeyez must be
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read as (xéyleéz and & is called right-binding if x&y&z must be read
as x@(yasz) . Notice that the (syntactic) binding conventions of an operator
have nothing to do with the (semantic) notion of asseciativity, except for the
toct that associative operators need no separate binding conventions,

Function application is denoted by the infix operator - ("dot"). For
example, we write f-x and g-x-y instead of the more clossical f{x) and
glx,y) . Operator - is left-binding and it binds stronger than all other

operators. Sometimes, we use subscription for function application, which
binds even stronger than + ; for example, tx, means f-(x.y) .

The most important property of functions is x=y = fx=fy; its
explicit formulation is attributed to Leibniz. In caleulations, we use the hint
"Leibniz" to indicate use of this property, In the more syntactic realm of
tormuta manipulation this is also called substitution of equals for equals.

A predicate on set V is a boolean-valued function on V. Rctually,
we do not formally distinguish predicales on a set from subsets of that set:
we identifu each subset with its choraclerising predicate, So, we write U-x
instead of xel , we have P={x |P.x} 6 and {x} denotes the point-predicate
that is true in x only.

For predicates we use the calculus developed by E.W. Dijkstra and
W.H.3. Feijen [Dij3]. In order to make this monograph more self-contained,
we summarise the rules for quantified expressions here.

With any symmetric and associative binary operator @ on a set V
a, so-called, quantifier is associated, denoted here by @ . With it we con
form quantified expressions of the form (@ x:Pac:Fex) in which name x
ccours as a dummy (bound variable), and in which P is a predicate on a
set U, say, and F is a function of type U=V _ In practice, P-x and F-x
are often (represented by) expressions in which x may occur as a free
variable. Predicate P iz a subset of U called the range of the quantification,
For the soke of brevily, P-x is sometimes omitted, giving (Bx::F-x) .
Expression F.x is catled the ferm of the quantification. The most important
rules for manipulating quantified expressions are:

emply=range rule: (B@x:false:Fx) = e
provided that @ has identity e |

one-point rule; (@x:x=y:F-x) =Fy ,forally: Uy



range split:

dummy substitution

dummy shuffling :

(@x:Pxv@x:Fx} = (Bx:Px:Fx)a@{®x:Qux:Fx),
provided that & is idempotent or that P and O are
disjaint,

(Bx:Px:Fx) = (By;Plfy):F-(fy)) | where
function f is either bijective or surjective; in the latier
case @ must be idempotent.

(Bx:Px: (By:Qy:Fxyl) =
(By:Qy: (Bx: P Foxyl)

Because of the possibility of dummy shuffling, nested guantifications
can also be writlen, without causing confusion, as (B xy:Pxaly:Faey) .
The most frequently used guantifiers are:

A corresponding to A (idempotent, with identity true )
E correspaonding te v (idempotent, with identity false )
] corresponding to + {not idempotent, with identity 0 )

MIN  corresponding to min  (idempotent, with identity o )
MAX  corresponding to max (idempotent, with identity -co }

For boolean quantifications we have the possibility of, so-called,
range and ferm z‘rading, and of ingtanfigtion: the rule of instantiation can

be derived by means of range split and the one-point rule:

trading

instantiation

(Ax:Px: Qx3R-x}
(Ex:P-x:Q-xAR-x)

(Ax: PoxAaQx:Rex)
(Ex:PxAQx:Rx)

(Ax:Poc:Qix) = Qwy , for alky : Py
(Ex:P-x:Qx) « Qy , forall y: Py

Furthermore, MIN and MAX have the tollawing properties, which may
be considered as their definitions:

definition of MIN;

Fey= (MINx:P-x:Fx) = Py a (Ax: P FaygFox) |
for all y : Uy
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definition of MAX; Foy={MAXx:P-x;F-x) = Py a (Ax;Px:F-xgFy)
for all y : Uy

Finatly, if another operator @ , say, distributes over & | then it also
distributes over quantified expressions with nonempfy range; ie. for P,
P#d , we have:

(@ x:Px:Fxoy)
{($x.Px:yeFux)

disiribution ; ($x:Px:Fx)ey
y@ (Bx:Px:Fx)

The fwo rules of distribution are also valid for empty P, provided that
e@y=e and y®e=e respectively. For example, because truevy = true
and ywvirue = true , v distribules over A in all cases; similarly, A
digtributes over E .

‘Quantified expressions inherit many other properties of the operators
on which they are based. For example, the rules of De Morgan alse apply to
boolean quantifications,

We itlustrate the use of the above conventions with o small example
of a derivation, In practice, mr{ge aplits in which a single point of the range
is split off followed by an application of the one-point rule gre combined into
a single step. Becouse this derivation exhibits a pattern that occurs quite
often, we sometimes even combing all four steps of ihis derivation into one
step; for | satistying Q<) we have:

(Si:0gicjti:F)
{ range split: 0=iv 1gi<j*l (using 0gj) }
(Si:0=i:F-i)+ (Sir1gi<i+l:F-i)
= { one-point rule }
Feo + (Sittgizj+1:Fei)
= { dummy substitution i«i+1 (i.e: fi=i+1) }
Feol + (Sicigisl<jel Fuliet))

= { algebra }
FeO0# (Si:0gigj:Flisl))



1 The basic formalism

1.0 Introduction

In this chapter we define a simple, abstract functional-program natation
called the bgsic formalism. The bosic tormalism constitutes the aessence of
functional programming, as we view it, and nothing else. The values of the
expressions in the formalism may be inferprefed as functions, but otherwise
these values are uninterpreted objects. In this respect, the bosic formalism
resembtes A-calculus, but, in contrast to A-caiculus, the notation has been
designed for programming. Particularly, the notation differs from i-calcutus
by the use of, so-called, where—ciauses instead of A-abstractions; the idea
to use where-ctauses has been adopted from notations such as SASL [Turol.

Atthough simple and abstract, the basic formalism is complete: if
g0 desired, all features of the program notation, as it is developed in this
monograph, can be defined in the basic formaligm, Thus, the basic formalism
provides a simple setting for the discussion of a number of general conventions
and theorems. These conventions and theorems, then, are applicable to the
full program notation too.

The basic formalism consists of a sot of, so-called, expressions, a set
of, so-called, values, and a, so-called, value function that maps expressions to
values. So, a value is assigned to every expression. The expressions form the
syntactic part of the formalism, whereas the values and the value function form
the semantics of the formalism. In this monograph we define the semantics
axiomatically, by means of postulates specifying properties of the sst of values
and of the value function. These postulates capture all we need for the sake
of programming; yet, they do not define the values and the value function
completely, This does not mean, however, that we propose a nondeterministic
program notation. By means of the value function, the relation between an
expression and its value is suppesed to be completaly fixed; the indefarminacy,
as we propose to call it, of the program notation i a property of the postulates
specifying the relation belween oxpressions and their values, not of that
relation itself. Ue have chosen this modus operandi in order to aveid over-
specification: we do not wish to define those properties of the value function



that we consider irrelevant for our purpoge, namely the derivation of programs
from specifications.

We think that this approach yields the simplest possible formatlizm
suitable for programming. One marked differsnce between our approach and
other presentations of the subject is that we deliberately omit atl notions -
regarding the possibility to interpret expressions as executable programs.
Thie does not mean that this operatfenal interpretation has not played a role
in the design of the formalism. On the contrary! The way in which the rules
of the game have been chosen can only be justified by an appeal to the require-
ment that the formalism allows a -- sufficiently efficient -—  operational
interpretation. Yet, it is possible to explain and use the formalism, free from
connotations, as a pisce of mathematics in its own right. Particularly, within
the formalism there is no such notion as fermination, and we need not concern
ourselves with the termination of -- the computations evoked by execution
of -=- our programs, We discuss these operational aspects of the notation in
more detail in chapter 3.

In order that the tormalism be useful for practical purposes, we must
prove that the set of rules defining it ia consisient, i.e. non-contradictory. In
this monograph we do not present such proef. This proof is, however, not
difficult to construet, if we take into account the following two observations.
First, the basic formalism can be iranslated easily into A-calculus, in such a
way that the, so-called, term mode! [Hin] guarantees its consistency. Second,
us stated cbove, all features of the full notation can be defined in the basic
formalism. Hence, the consistency of the program notation foltows from the
consistency of the basic formaliam.

In the next sections we present the basic formalism without explaining
why we have chosen it to be the way it is. Apart from its usability for program-
ming, the main design criterion has been our explicit desire not to distinguish
tormally between functions and other values. Therefore, in the basic formalism
the notion of a function does net oceur; it i only a matter of inferprelaiion
that we consider values as functions. We discuss this in section 1.9.

1.1 Values and expressions

The formalism consists of o set of expressions, a set of volues, and
a value function, mapping expressions to values. The set of expressions is
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catled Exp , the set of valuss is called Q. The value function remains
anonymous: all of its properties relevant to our purpose can be expressed by
means of equalities between the values of expressions. Theretere, for
expressions E and F, we use E=F to denote semantic equality, not
syntactic equality, of E and F . In the, rather exceptional, case where we
wish to discuss syntactic equality of expressions, we announce this explicitly.
Notice that thig is common practice in mathematics. For exampla, the assertion
2+3 =5 means that expressions 2+3 uand 5 denote the same values; it
does not mean that they are the same expressions. In what follows we do
not explicitly mention the value function anymore; instead, we simply speak
of the value of an expression.

The expressions are symbolic representations of the (abstract) volues
in ) : the values in (1 are the objects of our interest, whereas the expres-
sions only serve to provide us with representations (of these values} that
can be manipulated in derivations and that cen be evaluated by machines.
This implies that with goch value in Q and with each operator on Q there
is a corresponding syntactic form representing it. Rlgebraically speaking this
means that the value function is a homomorphism: if operator + , of type
Qx5 Q, is rendered syntactically by symbol & , then we hove, for
expressions E ond F with values x and y, that the value of E&F s
%+y . This being s0, we can, {0 a large extent, identify expreasions with their
vatues. Actually, it would be nice if we could ignore syntactic considerations
altogether and play the game in a purely algebraic way. The use of substitution,
in the rules of folding and unfolding, however, prohibita this.

We start with a discussion of some properties of () . Within the basic
formalism the elements of O are uninterpreted chjects, simply called values,
{2 is the universe containing all values we will ba studying.

convention 1.1.0: From here onwards atl variables in our formuloe range over
Q1 , unless stated otherwise.
u]

In order to exclude the, trivial, one-point model, we require that O is
not a singleton set, Later we show that OQ#¢ .
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postulate 1.1.1 (02 is not a singleton); (Ax;: (Ey:: x#y} )
0

Next, we assume the existence of a binary operalor, denoted by
("dot”), of type: Q x Q0 =+ {1 . This operator is written in infix notation, and,
in grder to save parentheses, we adopt the convention that it is left-binding;
f.e. x-y-z rmust be parsed as (x-y)-z . Moreover, it binds stronger than any
other operator.

note: Here we use the same symbol that we use for function application in our
metanotation. This causes no confusion, provided thal it is always clear
what the types of the operands are. On the other hand, this convention turns
oul to be extremely convenient: later, when we interpret values in O s
tunctions, operator - happens to represent function application.

In order to be oble to reason about values in Q , we need exprossions
lo represent them. For this purpose we define the set Exp , of expressions,
temporarily as follows.

definition 1.1.2 (syntax ot expressions):
(0} Exp - Const
(1) Exp = Name
(2) Exp » (" Exp - Exp ')’

Syntactic category Const will be defined later; its elements are called
constants. The idea is that conslanis represent (well-defined) elements of O,
namely solutions of equations of o particuler kind, Synlactic category Name
iz left ungpecified here; ita elements are names —- in the, more or less, usual
meaning of the word —- , In expressions names are onfy used os dummiss:
they ore bound. by universal quantification or by, so-called, where-clausas,
by means of which constants are defined. In either case they represent values
in O . e assume that Name is infinite; thus, we have an infinite supply of
fresh names, (.e. namas not occurring (yet) in our expressions.

Rule (2) in the above definition provides a symlactic representation
of operedor + on (1. This rule prescribes that all composite expressions
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should be parenthesized, In practice, however, we omit parentheses whenever
this causes no ambiguity. Obviously, for symbol - we adopt the same binding
convenlions as for the corresponding operator; as explained above, we ignore
the distinction between aperators on (O and their syntactic representations
as much as possible,

1.2 Intermezzo on combinatory logic

The development of the formedism can now be continued in various
ways. One way, which we shall not pursue further, is to postulote the exisi-
ence, in (1, of a fixed set of constanta with a number of explicitly formulated
properties, We may, for instance, introduce constants I, K, and S, and
pestulate that they have the following properties:

(0} (Ax:: Isx=x)
{1} (Ax,y:: Kexey=x)
(2) (Axy.z:: Seyz=xz)-ly-2))

With these, so-called, combinators the same games con be played
as with our formalism. It is, for instance, possible to prove that (0) | as
a postulate, is superfluous: I can be defined in terms of K and S . for
example by 1=5-K:-K . Then, (0) follows from (1) and (2) . In the same
vein, more interesting combinators can be defined in terms of K and S,
such ags combinaior Y satisfying:

(3) (Ax:: Hex=x(Yex) )}

This shows that every value in {1 . when ceonsidered as a function, has
a fixed poinf. One possible definition of Y is:

It

Y
w

Sl | with
$+(5-(K-8)-K)-(K-(5-1-1)]

The formalism thus obtained is called combinafory logic [Hinl. Iis
advantage is that rule (1) in definition 1.1.2 can be abolished: the whole game
can be played without the use of names. Thus, the mathematically awkward



13

notion of substitution iz avoided, Although interesting frem a mathematical
point of view, and aithough uzeful for the implementation of functional-program
notatiens [Turll[Peyl, combinatory logic is ill-suited for programming.

1.3 The dot postulate

Let £ be an expression in which no other names occur than x, y, z .
We now consider the following equation:

(0) x: (Ay,z:: xyz=E)

Notice that the names occuring in expressions are used as dummies: systematic
replacement of one of the names by a fresh one transforms the equation into
the same equation. In equation (0} , x is the unknown, y and z are the
parameters of %, and E is called the dafining expression of x . Since x
may occur in itz defining expression, equations of this type are also called
recursion equations [Turzl},

Equation (0) is rather special in that its unknown has 2 parameters:
the unknown may have any (natural) number of parameters. The rastriction
imposed here on E  -- later this restriction is relaxed again -- is that
the only names occurring in it are the unknown and ifs parameters. We call
equations formed according to these rules admissible equations. The following
example shows that, even without the use of constants, it is possible to
construct admissible equations.

example 1.3.0: Here are a few admissible equations:
(0 parameters): X X=X

(0 parameters): XX = XX

(1 parometer} @ x: (Ay:: x-y=y)

(2 parameters):  x: (Ry,2:: xeyz=y)

(2 parameters): x: (Ry,z:: xryrz=20x0y)

The following postulate is the characteristic postulate of the basic
formalism, in the sense that it has far-reaching consequences.
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postulate 1.3.1 (dot postulate): Every admissible equation has o (i.e: at least
one) solution in £ .
g

property 1.3.2: Q#¢ , because there are admissible equations.

property 1.3.2. Postulates (0}, (1), (2) in section 1.2 can be considered as
admissible equations, with unknowns I, K, and S respectively. Hence,
{1 contains vatues 1, K, and 5 satisfying these postulotes, ond our
formalism contdins combinatory logic.

property 1.3.4: [t would have been sufficient to slate the dot postulate for
non-recursive equations == i.e. equations in which the unknown does not
oceur in its defining expression -- only. By means of a combinglor 4,
satisfying (3] in section 1.2, we can prove that each recursive equation
has a solution too,

property 1.3.5: By means of combinators I and K only, it con be proved
that Q0 ts either a singleton set or infinite. Using postulate 1.1.1 we
conclude that Q is infinite.

]

uside 1.3.8: The kind of equations introduced here is typical for functional-
progam notations, By admission of other —- usually larger —— classes
of equations other formalisms can be obtained, such as logic-program
notations, A larger class of odmissible equations mokes programming
easier, but can be more difficult to implement efficiently: each program
notation ia o compromise between ease of programming and implementability
{Hoa0]. The advantage of funclional notations over logic notations is that
the former can be implemented much more efficiently than the latter,

1.4 UWhere—clauses

Due to the dot postulate, every admissible equation has a solution in
Q , We now extend the formalism with a notation for these solutiong; they
form the constants mentioned, but left unspecified, in section 1.1, Constants
are denoted by nomes {as are porameters). Such names are bound to the
values they represent by means of, so-catled, where-clayses. A where—clause
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contains a name and -- a concise enceding of —— an admissible equation; its
meaning is that, within the expression to which the where—clause pertains, the
nome represents a solution of the equotion. On account of the dot postulate,
such a solution exists,

It is, of course, possible that the eguation has many sclutions. In that
case, we leave unspecified which solution is intended, but we do postulate that
all occurrences of the constant thus defined dencte one and fthe same solution
of the eguation, The lotter requirement is necessary to keep the formalism
deterministic, Ais a result, the only thing we {care to) know about the constant
iw that it is a solution of its defining equation, and this is the only knowledge
we shall ever use. The proof and manipulation rules formulated in the next
section are bosed on this allitude.

A whera-clause serves two purposes: it provides a syntaclic repre-
sentation of a (particular} solution of an admissible equation, and il provides
a name for that solution. The reason to use names to denote constonts is
threefold, Firgt, since names are now used for constants ond for parameters,
the roles of constants and parameters can be interchanged, if so desired.
Second, the use of a nome enhances modularigation, by providing o clear
separation of the definition of a constant from its use; even if the name is
used only once in the program, the increase in clarity usuolly outweighs the
price of ils introduction. Third, the use of names allows recursive definitions.

The syntax of expressions can he defined as follows, Notice that,
because constants are represenled by names, the syntactic category Const
can now be abotished, The following detinition replaces definition 1.1.1.

definition 1.4.0 {syntax of expressions):
Exp -» Name
Exp » (' Exp '-' Exp '}’
Exp » '(" Exp "I’ Def 'MW )
Def - Name { '-' Nome } '=" Exp

The elements of syntactic category Def are called definitions. Constructs
of the form { '~ Name } are called parameter lists. AU nomes occurring
to the left of the = sign in a definition must be different.
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suggested pronunciation: Fronounce [ as "where” and ]| as "end(where)”.
a

Syntactic category Def has been introduced so that we can extend it
later. We introduce some nomenclature, using the fotlowing example expression,
where E ond F are expressions and X, Yy, Z are names:

(o) Fllx-y-z=E]

Construct llx-y-z=EN is called a where-clause. It defines constant
% ; L.a. within F , each occurrence of x denotes that constant. Thus, F
constitutes the scope of x . Within expression (0) , when treated as a whole,
x is o dummy: "outside” {0} , occurrences of x have no meaning, at least
not on account of the where-clause in (0} .

Definition wy2=E is x's defining equation or definition, for short;
it is an abbraviation of the equation x: (Ay,z:: x-y-z=E)} . Notice that such
abbreviated notation is possible, without causing contusion, due to the
restricted form of admissible equations. Furthermore, notice that, here, we
use x in lwo ways: on the one hand, it denotes the unkncwn of the equation;
on the other hand, it denotes —- in F -- one particular solution of that
equation.

As exploined earlier in section 1.3, in expression E both x and
its parameters, y and 2z, may occur. Occurrences of a name in its (own)
defining expression (cf. section 1.3} are called recursive occurrences. More-
over, expression (0) may occur 0s subexpression in a larger expression.
In that case, both E and F may contain other names representing constants
or paramelers of constants defined in where-clouses in the targer expression:
whare-clauses may, for instance, be nested.

Summarigsing, we conclude that there are three woys in which a name
can aGtur in an expression:

« as a constant,

+  as a parameter,

+  d@s 4@ recursive occurrence.

Tha latter two cases pertain only to expressions that occur in the right-hand
side of a defining equation, whereas cccurrence os a constont requires that
the axpression is (part of) an expression containing a where=clause detining
that name.
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1.5 Free names, programs, und substitution

In the above, we used the notion "occur in (an expression}” in a rather
loose genze: actually, we meant "occur as a free name”. Throughout this
monograph we use "occur in” in this meaning. A formal definition, by recursion
on the definition of expressions (cf. definition 1.4.0) is:

definition 1.6.1 (names occurring in an expression):
For expressions E, F , different names x, y . and parameter list pp:

X occurs in x"
¥ ocours iny”

% ogcurs in E-F" = "x occurs in E” v "x oceurs in F°
- "% occurs in Fllx pp = €17

x ocours in Fily pp = EJ” =

x oceurs in F" v ("x occurs in E” A - "x occurs in pp”)

definition 1.5.2 (program): A progrom is an expression in which no (free)
names gcour,
O

Because names are only used as dummies and constants, we cannot
assign a value to expressions in which free nomes occur. Hence, the above
definition of programs. When taken in isolation, however, the subexpressions
of an expression may cortain free names. This couses no problems, becouse
such subexpressions must always be understood in the context of the whole
expression they are part of. For reasons of manipulative efficiency it often
happens that we study subexpressions in isolation: we do not wish to copy,
over and over again, those parts of the expression that remain constant in the
derivation. Particularly, where-clauses are almost never subjected to tormal
manipulation, They only provide definitions of the constants cccurring in our
expressions. Therafore, we omit them when we manipuiate these expressicns.
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axample 1.5.3: I[[T.y=yll and CIC-x=Ifl-y=yl} are programs, We prove
that their values are different, by manipulation of C and T:

C#1
e { Leibniz, heading for applicability of C's and I's definitions }
(Ey:: Cy#£ly)
{ definitions of C and I }
(Ey:: 1#y)
{ postuiate 1.1.1 with x«I }
true ‘

1]

An often used kind of formula manipulation is subsfitution; it is a
textual operation mapping one exprassion te another by replocement of all
free occurrences of o name by (copies of) an expression. For the sake of
completeness, we give a definition of substitution for the basic formalism, but
we shatl not use it explicitly: the reader is assumed to know the notion from
other formaliems and he is assumed to be able to identity, in oxprassicns,
the free occurrences of a name.

definition 1,56,4 (substitution): For name x ond expressions E and G,
E(x«6) denotes the expression obtained from E by replacement of
all free occurrences of x by G . Formally, for expressions E, F, G,
different names x, y , and parameter list pp .

x(x+G) =G
Q(X(-G) =y
(E-FHxeB) = E{x«G) -F{x«B)

FIlx pp = EN{x «G)
(0) Flly pp = Ell{x+B)
{1) Flly pp = Ell{x «6)

1]

Filx pp = EJI
F(x«8)lly pp=E) , if pp contains x
Flx«G)ly pp = E{x«B8)]l , if x notinpp .

13

Ruie (0) is only correct for y not oceurring in G . ¥ y occurs in
G , systematic replacement of y by a fresh name =z, say, does the job;
i.e, replace the expression Fllypp=ENl by Flyez)ilz pp=Elyez)]l .
Because z is fresh, it is does not occur in G ; so, rule (0) is applicable



to the new expression.

The same holds for rule (1) ; moreover, rule (1) is only correct if
none of y's parameters ocour in G . By a simitar systematic replacement
of these par‘umeier‘s and their occurrences in B, bu fresh names, the
wherae-ctause can be tronsformed into one in which no parameter occurs
in G.

O

note 1.5.6: The equal signs in this definition denole synfactic equality: for
example: x{x«G) and G are, by definition, the same expression, Further-
more, that the result of a substitution is indeed an expression reguires
proof, but this is sasy.

g

1.6 Multiple definitions

We extend the basic formalism a little further. For expressions E
and F , and names u, v, w, x, y, we congider the following example of a
simultaneous equation, with unknowns x and y :

(0} %y (Auv:: xuv=E} A (Rw:: ygw=F)

Such equations are particutarly interesting when x occurs in F and y
occurs in E ; this is known as mufual recursion. We now decide that such
simultaneous equations, with any number of unknowns, each with its own
number of poramelers, are admissible too: hence, the dot postulate also
pertains lo these equations. In definitions, we simply write xeuw-v=E & yw=F |
where the new symbol & (“and”) is used to combine two definitions into one,
so-called, multiple definition.

This extension of the formalism is captured by the following extension
of the syntax rules of the notation:

definition 1.6.0 (multiple definitions; extension of definition 1.4.0):
Def » Def '& Def
jm}
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note 1.6.1: The symbol & corresponds with the, symmetric and associative,
A gccurring in the equations corresponding to the definition; hence, we
consider the syntactic ambiguity introduced by definition 1.6.0 as harmless.
Moreover, the order in which definitions are combined into one multiple
definition is irralevant, In this sense & may, atthough it is not an operatar,
be considered as being symmetric and associative,
The introduction of multiple definitions is not a true generalisation.
By means of fupling, introduced in chapler 2, these definitions can be
transformed into equivalent, simple definitions.

1.7 Proof and manipulation rules

In this section we discuss a number of formal rules for the manipulation
of expressions. Roughly, these rules come in two kinds. First, there iz a rule
for proving properties of expressions; second, there are rules for transforming
expressions into other expressions, Both kinds of rules can he justified by
tnterpretation of the expressions involved, using the definitions given in the
previous sections,

1.7.0 introduction and elimination of where-clouses

The following rule does not depend on the special form of admizsible
equations, as defined in sections 1.3 and 1.6, Therefore, we use a generalised
form of where-glauses: with Q a predicate on ., such that (Ex:: Qx) ,
we use the where=clause l[x:Qwx]l to indicate that x is defined to be o value
satisfying Q-x . Similarly, we use |[x,y:Q-x-yll . Later, we alsc use such
forms in the development of programs to specify values for which subprograms
must still be developed. The rule given here allows us to prove properties of
an expression with a where-clause in termsz of its subexpressions. The rule
treats aif solutions of the equation represented by the where-clause on equal
footing; thus, the rule reflects that we leave unspecitied which solution is
represented by the name defined in the where-clause.
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rule 1.7.0.0 (proof rule for where-clauses): For predicate U, satisiying
(Ex:: G:x) , predicate R on Q, expression F , and name x :

R-(FIlx:Q-x)} &« (Ax:Qx: R-F)

For the case of a multiple definition in which %k constants are defined, Q
becomes a predicate with k arguments, and the dummy x in the above
formutae must be replaced by k dummies representing these constants.
For the case k=2, we thus obtain;

Re{ Fllx,y: Q-x-yll} & (Ax,y:Qexey: RF )
O

exampla 1.7.0.1; For expressions E and F . nome x such that x does not
occur in E |, and value X | we derive:

Flix=Ell = X

& {rule 1,7.0.0 ([[x=E) means I[x:x=EN), with Rx ¢ x=X }
(Ax:x=E: F=X)

= { % does not occur in E; one-point rule }
FlxeE)=X

Choosing F{x+«E) for X, we conclude that, when x does not occur
in £, Fllx=Ell= Fix+«E) .
In this example we have derived one of the following properties. The

gther ones can be derived in a similar way.

property 1.7.0.2 (where-clause elimination rules):

for % not in E: Fiix=El = Fi{x«E)
for x not in F: Flix=EY = F
for x not in F: Filxpp=El = F
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1.7.1 folding and unfolding

Substitution is an operation by which all eccurrences of a name are
replaced by an expression. In program derivations, particularly in program
trangformations, we wish to be able to replace o single occurrence of a name
by an expression, The inverse operation, replacing a subexpression by a name,
is of interast too. Both kinds of manipulation are made possible by the following
rule. We content ourselves with an informal formulation, for {fwo reasons.
First, in practicol situations, everybody with a modest experience in formula
manipulation is able to apply this rule without error. Second, the notions of
a single (free) occurrence of a name and replacement thereof are hard to
tormalise. The rule is formulated here for names with 2 parameters only.

rule 1,7.1.0 {rule of folding and unfolding): For expressions A, B, E, F, &
and names x, y, z : if replacement, in F , of subexpression x-A:B by
Ely,z«A,B) yields G, then we have:

Filxoy-z=Ell = Glix-y-z=E]

If we use this rule to obtain Gllxsyz=E])l from Filx.ysz=E} , then
we call this unfolding x : if used to obtain the former expression from
the latter, then this is called folding x . The rule may alse be applied
when the where-clouse contains multiple definitions, i.e. when it is of the
form [[x.ypz=E & DY, for any definition 0 .

a

example 1,7,1.1: For expressions £, F and names x, y ., such that y does
not accur in F , we derive:

%Fllx-y=EJl

= { unfolding x }
ElyeF)llx-y=E]

= { ynot in F: property 1.7.0.2 }

Ely =Flllx-y=EX

In expression x-Fi{x.y=Ell, y occurs as a parameter, whereas in



subexpression Elly=F) it ococurs as a constant. Bpparently, poarameters
and constanis are not go different ag they may seem at first sight.
(]

example 1.7.1.2: For expression E and name x , we derive;

E

H

{ let y be a fresh name: property 1.7.0.2 }
Effyx=E}
= { tolding y }
yexlfy-x =E£J

{ shunting rule, see below }
{ylly-x =EN) » (xllyx =EN)
{ y nat in x: property 1.7.0.2 }

{ully-x=E}) - x
)
corollary 1.7.1.3: For every expression E and name x , an expression F ,
in which x does not occur, exists such that E=F-x .
|

1.7.2. shunting

The following rule expresses that where-clauses may be distributed
over dots.

rule 1.7.2.0 (shunting rule): For expressions E and F | and definition O :

E-FIDN = CEIOM - (FIDT)

The shunting rule iz used to separate/apply expressions denoting
functions from/to their arguments, as in example 1.7.1.2; applied in combination
with property 1.7.0.2, we have x-A-Bllx-y-z=E} = {xl{x-y-z=E)-R-B , provided
that x does not occur in either A or B . Although we usually prefer o write
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expressions in the form x-A-Blix-y-z=E) , we sometimes wish to consider
xllx-y-z=E] in isotation,

1.8 Specifications, programming, and modularisation

In this section we define specifications and we discuss the relation
between specifications and programs. Furthermore, we briefly discuss the
topic of modularisation.

definition 1.8.0 (specification): A specification is a predicate on .
a

In practical situations @ specification is, of course, a mathematical
expression denoting a predicate on 0. If we would play the game really
formally, we shoutd also define a specification notation in o formal way. In this
moncgraph, we do not do so, but we use, more or less common, mathematical
formulae instead.

In very general terms, programming can now be defined as the activity
of constructing @ program =-- cf. definition 152 —— whose value satisfies
an, a priori given, specification. Usually, the program constructed muat also
satisfy certain efficiency requirements. For the time being, we ignore these.
We now interpret this definition in a few, stightly different, ways.

Let B be a specification. A volue satisfying it con be denoted by
the following proto pregram -- here we use the generalised form of where-
¢lauses introduced insection 1.7.0 -- :

(0) il s Rexc )t

We call this a proto program because x:R.x is nol a definition in the program
notation, If, however, x:R-x is an admissible equation, then (0) can be
encoded straightforwardly into e correct program, and we are done. If not,
we can try to fransform (0) , by means of formula manipulation, in as many
steps os needed to obtain a program. The same approach can be applied if we
have a program, but if we are not yet salisfied with its efficiency. This is
called the fransformational approach to programming, We would like to siress
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here that the starting point of such a transformation process need not he o
program: it may be any specification,

When, in a sequence of transformations starting with (0}, only
predicate R is manipulated, then the constant obligation to copy, in each
step, the symbols surrounding R becomes « little annoying. More importantly,
by confining our wmanipulations to the predicate, we obtain the freedom to
strengthen il: if {Ax:: Bx<Q-x) , for some predicate G, then (1) salisties
R -- this follows directly from the proof rule for where-clauses -- | with:

(1) xlx - Q-

We must only convince ourselves that x:Q-x has a solution; it this eguation
is an admissible one then this obligation is void, because the dot postulate
does the job. So, if (1) is a program we are done.

This approoch gives rise to a style of programming that takes place
mainly in the domain of predicate colculus. It can also be considered as
transtormational: the specification is transformed, viz, strengthened, into
one that is an admissible definition,

The value of the program io be constructed may also be specified by
a mathematical expression denoting that value. Actually, formela (0) is a
special case of this. Again, we may try to transtorm this expression into an
equivalent expression in the program notation. We can, however, also bring
this problem into the domain of predicate calculus, by defining predicate R
by: (Ax::Rx=(x=E)), where E denotes the expression specifying the
program.

In the above, we have shown that programming con be carried out
both in the domain of expressions and in the domain of predicate caleulus.
Moreover, transitions between the two domains can be performed quite easily.
In practical situations, we chaose the domain that suits our purpose best.

We now congider expressions of the following form:
(2) Fllx=E}

For the sake of simplicity, we assume here that x has no parameters. The
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way in which expressions of this form are constructed can be choracterised
as follows. Starting with a specification R , we derive q, tentative, expression
G such that R-G . Now assume that G contains, one or more, instances of
a subexpression that is not yet an expression in the program notation. We
then may decide to give this subexpression a name x and replace all of its
instances by x . This yields expression F . Moreover, from the information
obtained in the derivation of G, we construct a specification @ for x, in
such a way that {Ax:Q.x: RF} . Using the proof rule for where-clauses, we
conclude R-(Filx:Q-xIl} . Finally, from @ we derive the definition x=E .
Hence, the correciness of expression F only depends on x's specification,
not on its definition. Thus, x's specification ig the interface between sub-
expressions F and E . For instance, if we replace £ by a new expression
E’ |, then the only new proof obligation is (Ax:x=E": Qx) ; this replacement
generates no new proof obligations for F . Thus, by construating apecifications
for names defined in where=clauses, we con use where-clauses to construct
programs in a moedular way.

1.9 Functiong

The elements of (0 are uninterpreted, abstract objects, We show
that they can be interpreted as funclions of type (O » O . Let f be a fixed
element of . We define function F: 0 > O, as follows -~ where we
use, for the scke of clarity, classical notation for function application —- ;

(o) (Ax:: Flx)=fx)

Thus, f is a representation of F ., and ) is a representatien of a subsge!
of O = (. 0fcourse, not every function in 3 + (0 is representable in € :
it is wetl-known that for any set with at least 2 elements, such as 0, no
surjective mappings from the set onto its function spoce exist.

In practice, we do not distinguish functions from their representations:
thus, we simply speak of function f, instead of the function represented by f .
If we denote, as we do, ordinary function application by -+ too, the (notational)
distinction even becomes vaid; formula (0Q) . for instance, then becomes:

(1) (Ax:: Fax=1fx}
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This formula shows that there iz no need to introduce name F angmore.

convention 1.9.0: Expressions of the form f-x are called applications: we
aay thal function [ is applied to argument x .
a

Atthough (1 does not contain {representations of) all functions of
type O » O, the rules of tha game have been chosen in such a way that O
does represent a sufficiently interesting closs of functions. For instance,
considered as o set of functions, 2 is closed under function composition.
Function composition can even be programmed in the basic formalism.

property 1.9.4: O contains o volue ¢ satisfying:
(Af,g.x:: cfegex = £2(g-%))

proof: This is easy: considered as an equation with unknown ¢, the above
specification of ¢ is admissible; hence, it suffices to encode its solution

4% On expression, giving:

clictgx = f-(gx) 1l

O

corollary 1.9.2: (1 is clesed under function composition; i.e:
(Af.g:: (Eh:: (Ax::hx={-(gx})))

m]

For function f and value x, fx is an element of Q thal may be
interpreted as o function itself. Application of this function to another value
y ., say, yields f-x-y , and so on. Thus, such f may be considered as either
a 2-argument function or a, so-called, higher-order function, or both simultan-
eously, if so desired. Thus, Q not only represents a subset of (-, but
also represents subsets of Q- (> Q) . and s0 on. Hence, in (2, multi-
argument or higher-order functions need no special treatment.

The specification of a funciion { often has the following form:

{2) (Ax:Px: Qex-(f-x))
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Here P and Q are predicates on 0 and (Ox Q) respectively. Because (2)
provides information about fox only for those x thot satisty P, we call
P the domain of f, or, if we wish to stress that it is a predicate, f's
precondition; opparently, (2) expresses that we are only interested in f-x
for x satisfying P-x . In particulor, this is the case when we introduce some
of the function's parameters as, so-called, additiena! paramefers -- see
chapter 4 —— ; usually, these parameters are redundant in the sense that the
values they represent can also be expressed in the terms of the other para-
meters. In such coses, we use a precondition to fix the relation between the
paramaters of the function.

When, en a given domain, two functions have the same values, we call
these functions funclionally equivalent on that domain. This is captured by the
following definition,

definition 1.9.3 (functional equivalence): For predicate P and functions {
and g, "t and g are functionally equivalent on domain P" meansa:

(Rx:Pux: tx=g-x)

When it is clear from the context what domain is intended, we simply call
f and g functionally equivatent.
[m]

Valueg that are funclionally equivalent on a domain represent, on thot
domain, the same function. This does not mean, however, thal funclional equi-
valence implias aquality: outside their domain, the two functions may have
different values,

Usually, the domains of the functions we are interested in are proper
subgets of () . Tharefore, there is no point in introducing (3] as o postulate,
for the simple reason that we cannot use it:

(3) (Af.g:: (Ax::f-x=gx) 3 f=g)

This property, often referred to as extensionality, is useless for our purposes,
because, in order teo apply it, we must prove (Ax::f-x=g-=x}; when f
and g are supposed o have domain P, for P a proper subset of Q, then
(Ax:Pwx:fox=gx] is about the strongest property we are both willing and
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able lo prove about f and g .
The converse to (3) is:

{4} (Afg:: (Ax: fax=gx) & f=g)

This is an application of Leibniz’'s rule to function - ; it has nothing 1o do
with extensionality. We often use it implicitly, as follows, Whenever we have
derived o defining equation of the form f-x=F-x, for names f x and
expression F inwhich x does not oecur, we may replace it by the definition
{=F ; phrosed differently, definition f=F iz a correct implementation of
fox =Fex . Thiz follows directly from (4) ; remember that definition f-x=F-x
is an abbreviation of (Ax;:fx=F.x) .

1.10 Types

In this section, we extend the formalism with a, rather simple, notion
ot fypes.

definition 1.10.0 (iype): A type is a subset of Q. For type P and value x,
we use the phrase "x has type P” as a synonym for P-x .
a

As a result of our convention not to distinguish subsets of a set from
predicates on that set, thare is no format difference between types and speci-
fications, Hence, proving that an expression has a certain type is not different
from proving thal an expression salisfies a certain specification. Thus, no
separate proof rules are needad to deal with types.

According to this definition, our notion of type is a semantic one, not
a syntactic one. Consequently, "having a certain type” is not a mechanically
decidable property, If we wish to assert that an expression has o certain
type, this requires proof, Moreover, we cannot speak of the type of a value:
genarally, one and the same value may have ditferent types, or, in other words,
types need not be disjoird,

To ease the interpretation of elements of 2 as functions, as discussed
in section 1.9, we introduce a fype constructor that resembles the well-known



1 The basic formalism 30

conatructor for function spaces from mathematics. Since types are predicates,
the conatructor actually is an operator on predicates.

definition 1.10.1 {the type constructor + ("fe")): For types P and Q, the
type P+Q is defined by:

{Ax:: (Po>Q)wx = {RyY:Py: Q-(x-y})

fis an operator, - is right binding; ite binding power equals that of «
and .

(]

convention 1.10.2: If x has type P->Q, then x may be taken to represent
a function from P fo Q. In common parlance, we simply say that "x /s
a function of type P0Q "

)

In ordinary mathematics P>Q denotes the set of ail functions from P
o Q. Here, it denotes the subset of () whose elements ropresent -- some
of the —— tunctions from P to U . Since we are onty interested in funclions

that are representable in Q |, this restricted meaning of » does not harm us.
The following properties deal with introduction and elimination of - .

property 1.10.3 ( > introduction): For expression E , possibly containing x
us free name, f o fresh name, and types P and Q:

(P>0)-{{lfx=E)) = (Ax:Px: QL)

]

property 1.10.4 ( » elimination): For types P and Q:
(Af,x:: Pox A (P=2Q)-f 2 Q-{f-x) )

a

oxample 1.10.5; For types P, Q, R:
liIxx =x]l has type PP
KIK-x-y=x]l has type P=Q=P
clle-f-gx=1-({g-x}1 has type {A+R) = (P20Q) » (P>R)
every value has types P> and @-»P
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exomple 1.10.6 (the range of a function): For function 1, predicate R,
defined by R-y=(Ex::y=fx), is the least type such that { has type
Q=K.

The following property resembles the rule for sequential programs
according to which preconditions of programs may be strengthened and
posteconditions may be weakened. This is nol so strange: to some extent, a
function's argument and the function’s value may be associated with the initial
and final states of a sequential machine,

property 1.10.7 (monoticity properties of -+ }: Fortypes P, @, R and value x :
(PcQ) A {@Q3R).x = (P>R}x
(P-@x A {QcR) = (P2R)x

1.11 On recursion

We derive twe theorems applicoble to recursive definitions., These
theorems are not deep, but they shed some light on how properties of recur-
sively defined values can be proved. The theory developed here does not
depend on properties of () ; therefore, we present it in more general terms.

Let F be a function of typa V =+ V , where V is a set, Furthermore,
all variables range over V|, unless indicated otherwise.

We assume that f is a fixed pointof F ; le. f satisties;

(0) {=F-f
We invesligate what we must prove about F  in order that we may conclude
that f satisties a given specification, 1.9, we are interested in theorems of the

fotlowing form, in which R denotes f's specification and P is a condition
to be satisfied by F .

(1) Rt & P
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Phrased difterently, we investigate various solutions of equation (1} , in which
P ia the unknown,

Obviously, the weakest pessible sotution -- when (0) is all we know
about { -- of (1) is given by:

(2) {Rg:g=F-g: R-g)

In order to obtain more manageable forms, we strenghten (2} for the special
case where R iz given by:

(3) (Rg::R-g = (Ax:Cex: Qexeg) )
Here, @ is a predicate on Cx V and we assume that C is a set that is
equipped with a partial order ¢, such that (C, <) is well-founded. So, we may
use mathematical induction over € | We now have:

(Ax:Cx: Qexef) & (2) A (3)

We now derive, starting with (2) :

(Ag:-g=F-g: R-g)

= {3}
{(Ag:g=F-g: (Ax:Cwx: Qexegl )
& { mathematical induction }
(Ag:g=F-g: (Ax:C-x: (Ay: Coy A y<x: Goyeg) = Qx-g) )
= { Leibniz }
(Ag:g=F+g: (Ax:Cx: (Ay: Cy A Yy<x: Qy-g) 2 Qx(F-g) ) )
@ { strengthening by weakening the range of the guantification }

(Rg:: (Ax:Cox: (Ay: Coy nyex: Qegeg) = Qexe(Fog) 3
= { unnesting dummies }
(Agx:C-x: (Ay: C-y Ay<x: Qoyeg) 2 Qexe(Feg) )

Thus, we have derived our first recursion theorem.
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theoram 1.11.0 (first recursion theorem): (B8) « (4} A (5) |, with;
{4) f=F-f
(5} (Ry,x:Cox: (Ay: Coy A y<x : Qy-g) » Q-x-(F-g) )
(6} (Ax: C-x: Q-x-f)

By a {very) similar derivation, we obtain our second theorem for the
even more special cuse where C  is the natural numbers, with the usual
ordering.

theoram 1.11.1 {second recursion theorem): (10} & (7) A (8) A {8) |, with:
(7} f=F-f
(8) (Ag:: G-0+q)
(9) (Ag,i:0gi: Qui-g 2 Q-(i+1)-(F-g) )
(10} (Ri:0gi: Qei-f)

The step with hint "Leibniz” , in the cbove derivation, is rather
arbitrary: we might have equatly well replaced the other occurrence of ¢
by F-g, or we might have replaced g by F'.g, for some other natural i,
ditferent from 0, The strengthening step following this step is directed
towards simplification of the formula. Obviously, the freedom we have here
indicates that many more theorems of this kind can be derived in a similar way.

In practice, we do not introduce name g : since f=F« is the only
knowledge about f we have, the procf can be carried out in terms of f
aquatly well, Moreaver, very often we prove (Ax:C-x; Q-x-1) by mathematical
induction straight away, without using the recursion theorems at all.

We conclude this section with the remark that the validity of the
theorems derived cbove is independent of the question whether or not ft,
satisfying f=F-f , does exist, Apparently, this is a separable concern.

1.12 Exomples
Ue conctude this chapter with a few examples illustrating the use of the

bosic formalism. In this section, we use constants 1, C, K of the previous
sactions. We recall their definitions hera, Notice that, in these and the other
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definitions in this section, we use the syntactic form provided by the basic
formatism —-— without brackets If and )| — : i.e. universal quantification over
the paramaters is left implicit;

[x=x & Cox=1 & Kwxey=x
exampls 1.12.0 (pair formation): Let pair, fst, and end be defined by:
PQITHX+YsE = SeX-yY

& fstp p-K
& snd-p = pC

We then have:

fst- (pair-x-y)

{ unfolding fat }
pair-x-y-K

{ unfolding pair }
Kex-y
= { unfolding K }

X o,

By a similar calculation we can derive that snd-(pair-x-y) =y . Hence, a
pair forming function and its inverses can be defined in the basic formalism.
Thus, the product space (Qx () is representable in 0 .

]

axample 1.12.1 (primitive boolean operations): Using functions pair, fat, and
defined in the previous example, we design constants true and false .
and & function if with the following specification =- this speecification
implies that true#talse --:

(Ax,y:: ittrugsxy = x A if-falsexy = y)

Observing that x=fst-(pair-xy) , that y=snd-(pairacey) , and that these
two expressions are instances of the general expression z-(pair-x-y) , we
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choose for if the follgwing definition; this choice leaves us no further
freedom for the definitions of true and false :

if-z-x-y = z+(pair-x-y)
& ftrue = fsl
& false = snd

Now other elementary boolean functions e¢an be defined, for example:

notx = if-x-talse-true
& andu-y = if-x-y-folse
& or-xy = if-xetruewy

These examples show that values defined to be used as functions may
also be used as constants in the definitions of other functions. Here, we exploit
that we need not distinguish between functions and other values.

example 1.12.2 {modularisation): Multiple occurrences of the same subex-
pression can he eliminated by means of where-clauses. This can even be
done in two different ways. For example, for expression E and some
binary operater @ , we derive:

EeE

= { let f be a fresh name: property 1,7.0.2 }
EeEllfx=xax]

= { folding 1 }
f-EMfx=x®x}

Fnd:
EaE

= { let x be a fresh nome: property 1.7.0,2 }
EeEilx=El

= { folding x (twice) }
xexllx=Ell
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The expression x@xllx=EJ iz simpler thon fEllfx=sxex] and is,
therefore, to be preferred. Elimination of such multiple occurrences may
be necessary to simplify reasoning about such expressions, or to improve
their efficiency. or both,



1]

2 The program notation

2.0 Introduction

In this chapter we extend the functional-program notation with
+  fypes Bool, Nat, and Int,
+  varigug operators,
« language constructs for case analysis and tuple formation.

The pregram notation, as presented in this monograph, has been chasen
as sober as possible. We introduce only those notions that we consider neces-
sary or convenignt for the development and illustration of our programming
tachniques. Thus, we have not cared to think about the introduction of practical
things such as, for example, characters, sirings, or enumeration fypes. Even
the notion of fuples, which provides a convenient framework for recursive,
datatypes, is introduced here in the simplest possible way.

2.1 On iypes and operators

In the following sections we introduce o few stendord types and
cperators on these types. Here, we discuss in general terms how to use these
operators properly, Furthermore, we introduce a syntactic convention by
means of which these operators can be treated as expressions themselves,

Whenever we infroduce a binary operator @ |, the syntax of the notation
must be extended accordingly with a rule:

Exp + (" Exp '@ Exp ")’

in the fellowing sections we do not reformulate this rule, over and over again,
for gach of the operaferg infroduced, Instead, we only summarise the binding
conventions used to reduce parentheses. Similarly, we omit the, equatly
obvious, syntox extensions corresponding to the unary operators.
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Let ® be a binary operator of type PxP = @G, for fixed types P and
Q ;e tor expressions £ and F having type P, E®F is an expression
having type @ . Notice, however, that EeF is a correct expression for any
two expressions E and F : in order to conclude that E@F has type Q
we must prove that E and F have type P . So, the syntactical form of the
expression does not pravide, all by itself, sufficient information on its type.
Yat, if @ "only” has type PxP > Q, then there is no point in using @ with
operands not having type P, One should keep in mind, however, that each
use of such an operator brings along a proof obligation. In seclion 2.8 we
give examples of the pitfalls caused by violation of this requirement.

For each binary operator @ in the program notation we can construct
an expression representing il, viz. fllf-xy=xa&ygll . In this way, the
operators from the notation can be treated as values themselves; they may,
for instance, be used as arguments in function applications, For the sake of
conciseness, we introduce an abbreviation for the obove expression, Similarly,
we introduce abbreviations for the funclions abtained by fixing one of the two

arguments,

definifion 2.1.0: For binary operator @ and expressions £ and F, (@),
{(E®) , and (®F) are expressions too; they satisfy:

(@} = fllfoey=xayl
(Ee) = fllty =Eaoyl
(@F) = fllfx =xefl

m|

warning 2.1.1: But for one exception, the new way of using parentheses intro-
duced here causes no ambiguities. The exceplion is (~F) , in which -
now can be inferpreted both as the unary and as the binary minus operator
{introduced in section 2.3} By default, the interpretation as the unary
operator is chosen,

[}

example 2.1.2: Eef = (¢)-E-F, E®F = (E®)-F ,and EeF = (af )L .
[}
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convention 2,1.3; We use such abbreviations in the metanotation too. For
example, (=2) denotes predicate P with P.x = (x=2) , whereas
(=2) U (=3) denotes predicate P with P-x = (x=2}v (x=3) .

[}

2.2 Function composition

In chapter 1 we have shown that function composition can be defined
in the basic formalism. Here, we introduce a notation for it,

definition 2.2.0 (function composition): Function composition is denoted by
the binary infix operator o ("composed with™) ; it satisfies:

(Af,gx:: (feglx=1-{gx) )

o binds weaker than ., but both operators bind stronger that any of the
other operators. = is associative in the sense that fo(geh) and (fegleh
are functionally equivalent on domain ) (cf. definition 1.9.3).

2.3 The types Bool, Nat, and Int
Informally, the sets Bool , Nat, and Int are given by:

detinition 2.3.0:

Bool = {true, false }

Net ={0,1,2,3,.}

Int =Natw {-1,-2,-3,--}
(W]

Since these sets are well-known, we do not give formal definitions here. We
incorporate them as types in the program nolation by means of the following
postulate.
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postulate 2.3.1;

]

Bool & Q)
Nat € Q
Int €0

This postulate is realistic in the sense that it is possible 1o represent these
types in the basic formalism by suitably designed expressions. The mireduction
of speciol nomenclalure for (the elements of] these types is necessary, both
for the sake of bravity and for the sake of representational abstraction,

Syntactically, the elements of these types are represented as suggested

by definition 2.3.0 above. Furthermore, we extend the notation with the usuai
unary and hinary operators on booleans and numbers. Their representations
and their relative binding powers are given as follows.

summary 2.3.2 (syntax of the arithmetic and boolean operators):

In decreusing order of binding power, the operators are:

(0)  (unary) -

(1) max , min
(2) * , div , mod
(3) + -

(4) (unary) -
(5) ALY

(8) s, >

(7) =, #

The operators in lings labelled (0) through (3) are called arithmetic
operators; those in lines labelled (4) through (7) are calted boolean
operators, All operators except the unary ones are used in infix notation.

The meaning of these operators is the usual cne. Since no universal

consensus exists about the meaning of div and mod , we give our interpreta-
tion here. For the other operators we specify their types only.
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summary 2.3.3 (semantics of the arithmetic and boolean operators):

(0} {unary) - has type Ini = Int.

(1) max , min , %, +, — have type IntxInt= Int; apart from -
they also have type NatxNat » Nat |

(2) div has types IntxPos -+ Int and NatxPos - Nat, and mod
has tupe IntxPos = Nat , where Pos-x = Natx A 0<x . The pair
(adivb,amodb) is the (unigue} solution of the equation
gqr:a=qxb+r A0gr<b, for ab satisfying Int-a A Pos:b .

(3) - has type Bool + Bool .

{4) A,V ,&,2, =, % have type Boolx Boot » Bool .

=]

We assume the reader to be familiar with the algebroic properties of these
operators. In calculations we mostly use these properties with no other justifi-
cation than the general hint "algebra” or “calculus” .

convention 2.3.4; Expressions having type Bool , Nat, or Int are called
boolean, natural, and infeger expressians respectively.
o

2.4 The relational operators

An other important class of binary operators is formed by the relafional
operators .

summary 2.4.0 (relational operators):
The relational operators are <,g€,=.#,2,> . They bind weaker than
the arithmetic operators and stronger than the boclean operatars. Their
meaning is the usual one. They have types IntxInt - Bool and, hence,
alan Natx Nat -+ Bool .

Notice that the symbols = and # introduced above into the program
notation also eccur in the metanotation in which we discuss programs: in the
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program nolagtion E=F s an expression composed of subexpressions E

and F and the operator = in the metanotation, E=F is the assertion
that expressions E and F have the same value, The meanings of these two
uses of = are not completely the same. In the metanotation, E=F is a well-

defined boolean valua for any two expressions E and F . In the program
netation the value of E=F is boolean only if both £ and F have type Int;
in that case, the two meanings of = coincide. For other expressions. the
value of E=F has been left unspecified, so we may nol even conclude that
its value iz boolean,

In programs we use the equality operator only with integer expressions.
S0, in practice we need not be aware of the difference between the two uses
ot = ; hence, the use of the same symbot for both purposes is harmless. One
should keep in mind, however, that the use of = and # in programs brings
along the same kind of proof obligation as the use of the other operaicrs does.

2.5 Guarded salections

By means of, so-called, guarded selections we can use case analysis
in programs. In contrast te other functional-program notations we have chosen
a form in which the textual order of the, so-called, allernatives is irrelevant
for the meaning of the construct. The advontage of this is that each alternative
of a guarded selection can now be discussed in iselation: its meaning does not
depend on itg relative position within the construct. Morecver, the construct
is symmetric. The notation chosen here strongly resembles the nolation for
guarded commands {Dij0].

definition 28,0 (syntax of guarded selections): A guarded selection iz an
expression formed according to the following rules:

Exp » (" Gexp {0 Gexp}')
Gexp -+ Exp ‘="' Exp

The elements of Gexp are called alfernafives. In an alternative B E |
expressions B and E are colled the guerd and the guarded expression
respectively.
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We stipulate that the semantics of guarded selections is captured sutficiently
by the following postuiate; i.e, it is all we need to be able to use guarded
selections in programs.

postulate 2.5.1 (proof rule for guarded selections): For predicate R ond
guarded selection GS consisting of n+1 alternatives Bi > Ej L0gign,
we have R-GS « (0} A (1) A (2], with;

() {RAi:: Bool.B,)

(1) (Ei::B)

(2) {Ai:: Bi=>R-Ei)
]

Condition (0) in this rule states that all guards in a guarded selection must
be boolean expressions. That this condition oceurs in the semantical definition
is a consequence of our semantical interpretation of types. Condition (1}
stales thal at least one of the guards must have value true . and condition
(2) states that all guarded expressions whose guards are true must satisfy
the spacification of the whole construct. Notice that in (1) and (2) we have
written B‘ instead of Bi=true ;in view of (Q) this is correct.

The above proof rule does not specify the value of a guarded selection
completely. Az explained in section 1.0, this does netl mean that we propose
a nondeterministic notation. As any other expression, a guarded setection has
a single, uniguely determined, value that is, however, only partially specified
by the proof rule,

Guarded selections can be easily implemented in the basic formalism,
even in several ways. For example, expression (B +E 08 »E 0B -E,)
may be encoded as if-Bo-Eo-(if-Bl-Ei-Ez) . where it is the function detined
in example 1.12.1: this encoding satisfies postulate 2.5.1. Foach of these
implementations is, however, averspecific in the sense thal it contains more
information on the value of the expression than we care to know. In order to
avoid this, we have defined guarded selections in the above way.

oxample 2.5.2: tet E23 be the expression (true+2[true-»3) . Conditions
(0) and (1) of the proof rule are satisfied, Moreover, condition {2}
amounts to R-2AR-3, for any predicate R . The strongest R satisfying
thig is, of course, given by R-x = (x=2)v (x=3) . Hence, we conclude
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E23=2 v E23=3 . It we take (=2) for R, condition (2) is false; so,
the proof rule gives no information on whether or not E23=2 . Generaily,
we are not able to derive, by means of the proof rule, E23=x, for any
% . In particular, we do not know whelher or not {true»2 0 true=3)
equals (true=+301rues2) .

W]

The nbove example shows that ihe vatue of o guarded selection may
depend on the textual order of its alternatives. The proef rule itself, however,
is symmetric with respect to this textual order. lLe, if we have proved, by
means of ruile 2.5.1, that a guarded selection satisfies a given apacification,
then every guarded selection obtained by permutation of its alternatives also
satisties that specification, To all intents and purposes, this is sufficient.

example 2.5.3; With respect to any specification, expressions
{true 22 0 true > 3) aond {irue » 3 [ true » 2} ore equivalent,
O

for specifications of the form (=X) , for some fixed value X, rule
2.5.1 can be instantiated os follows.

property 2.5.4 {special cose of postulate 2.5.1); for value X and guarded
selection 55 consisting of n+1 alternatives Bi > Ei , 0gign, we have
GS=X & (0) A (1) A (2) , with:

{0} (Ri:: Bool-B,)

(1 (Ei::B,)

(2) (Ri:: B =E=X)
O

This rule shows that, in order to prove that a guarded selection hos value X,
we must prove that each alternative with o frue guord equals X .
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example 2.5.5;
{ogb » a [ bga =»b} =X
& {rule 254}
Bool:(agh) A Bool-(bga) A (agh v bga) A {agh2a=X) A (bgasb=X)
< { g has type IntxInt » Bool {iwice) }
Int:a A Intsb A {agb v bga) A {egh2a=X) A (bga=zb=X)
{ for Intsa A Intsb : agh v bga , definition of min } -

Int-a A Intbh A aminb=X

Thus, we have derived: Intea A Intsbh 2 (dgb » a [ bga 2b) = aminb .

In practice Inta A Intb will be part of the context in which the
derivation is carried out, and it will be used tacitly. Natice, however, that
the properties of £ and min used in the last step of the above derivation
are only valid for integer o and b .

The following property of guarded selections can be expressed verbally
by saying that, under certain conditions, function application distributes from
the left over the alternatives of a guarded selection. We use it quite often,
without explicit reference, to clean up the code of our programs.

property 2.5.6: For function F, value X and guarded selection G5 con-
sisting of n+1 allernatives Bi > Ei , 0gign, we have
(3) & (0} A (1) A (2) | with:

(0) (Ri:: Bool-B,)

(1) (Ei:: B}

(2) {Ai:: B.. =>F-Ei=)()

(8)  F-68 = (B,»FE 0. IB +FE )

proof: Assuming (0} A (1) A (2) we prove (3) by showing that both sides of
the equation are equal to X . First, F-G5=X on account of postulate 2.5.1,
with R-x = F-x=X; the premisses of 2.5.1 then amount to (0} A (1) A (2) .
Second, (B,=F.£ 0--[B ~FE )} =X on accoumt of property 254,
the premisses of which also amount to {0} A (1) A (2) .



47

2.6 Tuples

By means of fuple formation or, for short, fupling, any (finite) number
of values can be treated as a single, composite value. Algebraically, this means
that by meuns of tupting Q7 is representable within (1, for noturat n .
Syntactically, tuples are defined as follows,

definition 2.6.0 (syntax of tuples): A fuple is an expression formed according
to the following rules:

Exp -» '['Exps')
Exps - Empty
Exps » Exp { ') Exp)

Thus, a tuple is a sequence of expressioms separated by commas and
embraced by [ and 1. For sequances of length n . the tuplea thus
formed are called n-tuples . The expressions occurring in o tuple are
called the tupie's elements. The, one and only, O-tuple [1 iz also called
(the) emply (tupie}.

In order that, for m ond n such that m#n, m-tuples and n-tuples
can be distinguished, we introduce the following operator.

dafinition 2.6.1 (the size operator): The prefix operator = (“size of”) is
defined as follows:

for natural n and n-tuple x: =x=n
"

corollary 2.8.2: For m—tuple x and n-tuple y, we have: m#n = x#y .
0

Furthermore, an n-tuple is a tunction on the natural numbers less
than n ; the values of this function are the tuple's elements. Thus, for any
tuple we can form expressions denoting the tuple's elements. This is captured
by the following postulate.
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postulate 2.6.3 (element selection}: For natural n , expressions E,. 0gi<n,
we have:

(Ai:0gi<n: [E 'En—1]'i=Ei)

D‘“.

Actually, in our program notation, there is no difference hetween tuples
and finite {ists. as introduced, ond defined more formally in chapter 5.

2.7 Parameter and definition patterns

Buarded selections are used to encode cose analysis in the program
natation. Their use gives rise to rather long formulae, which is awkwerd if we
wish to manipulate one of the expression's alternatives only; in that case we
prefer to maniputate that alternative in igolation, To ease this, we provide the
notation with some syntactical sugar by means of which the use of guarded
selections in definitions can largely be avoided. Instead of writing one definition
with a long guarded selection for its defining expression, we use a multiple
definition with as many components as there are alternatives, Furthermore, we
introduce abbreviations for often occurring forms of definitions.

definition 2,7.0 (multiple definition of a single name): For expressions B,
and E , 0gign, name x . and parameter list pp , definition (1) may

be written as (0} , with:

{0) x pp = (B3 E,)
& xpp=(B,»E,)

& xpp = (Bn—> En)
(1) xpp={B»E 1B >E 0..08 +E}
At first sight, the use of a multiple definition for a single name seems

awkward: for n+l alternatives, the lefi-hand side of the definition must now
be repeated n times. We can now, however, introduce the possibility to write
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such definitions in a form that resembles the woy in which we write down
recurrence relations very much. Thus, encoding a set of recurrence relations
as definitions in the program notation now turns out to be a irivial operation
in the majority of cases. We call the syntactic forms used for this purpose
parameter potterns, They can be used in definitions when the parameters of
the function defined are supposed to have certuain, fixed, types, Hera, we
define such patterng for naturals and tor tuples. In chapter & we also introduce
patterns for lists.

definition 2.7.1 (definition and parameter patterns for Nat): For expression
E . natural ¢, name n, and fresh name x , we introduce the following
abbreviations for definitions:

n+c = £ means n=Ek-¢
g = E means  fox = (x=c =+ E)
f-(n+c} = £ maans  fx = (xpe 3> (Ellnsc=x1))

=}
example 2.7.2: Two equivalent encodings of the factorial function are:

fag[facn = (n=0 = 1
Inzt + nxfac-(n-1)
)
1
and:
fac [ fac-0 1
&fac-(n+1) = (n+1) % facn

1

Similarly, an expression for the function whose values are the Fibonacci

numbers is:

fib IL fibe0 =0
& tib-1 =1
& fib-{n+2) = fib-(n+1) + fibn

)|
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Tuples are of interest only because of their elements. Therefore, we
introduce a shorthand notation for the introduction of names for the elements
of a tuple, without explicit use of slement selectien and without naming the
tuple itself. This is useful both for naming the elements of a parameter that is
supposed to be @ tupie and for interpreting an arbitrary expression as a tuple.

definition 2.7.3 (definition and parameter patterns for tuples}: Here, we give
a definition for the empty tuple and for 3-tuples only; this is sufficiently
representative for the general case. For expression E |, nomes a, b, ¢,
and fresh name x , we have:

labegl=E means a=F0 & bh=E-1 & c=E.2
f-{1=E means fx={ax=0 2 E)
f.la,b,c]l =E  means fx = (=3 3 {Efl[ab,cl=x1))
(]

Because of the use of guarded expressiong in this definition, we can construct
multiple definitions, with parameter patterns, for functions taking tuples of
various sizes for their arguments. We give an example of this in the next
section,

2.8 Exomples

In thiz section we give three examples. The first example shows how
the arithmetic operators should not be used. The next two examples illusirate
the uze of tuples. Here, we present a few simple programs, without derivations.
The use of fupling. as a programming technique, is discussed more extensively
in chapter 4.

example 2.8.0: We consider the expression xl[x=2-x} . In order to compute
its value, we might derive:

¥ =2-X
= { atgebra }

x=1
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Thus, we might conclude that xf{x=2-x]l = 1 . Drawing this conclusion is,
however, wrong, because the above derivation is wrong: the hint "algebra”
refers to algebraic properties of the minus operator that are oniy valid
for integer x . A correct derivation is:

x=2mx A Intx

= { algebra }
x=1 A Intx
= {Int-1}
=1
In order to conclude that xllx=2-x} =1, we should dlso prove == on
account of the proof rule for where-clauses —-: (Ax:: x=2-x 3 Intx] .

This, however, is impossible.

Similarty, the equation x: x=1+x is an admissible equation; hence,
xllx=1+x)l is a correct expression. This equation has, howsver, no integer
solutions. Hence, Q#Int. Thus, we conclude that xllx=1+xll has a
non~integer volue; moreover, we can not refute (nor provel that this value
is also a solution of the equation x: x=2-x .

m]

example 2.B.1: We give three, equivalent, expressions for function fip , satis-
fying: (An:Natn: fip-n=[fiben, fib-(n+1} ]} , where {fib is the function
defined in example 2.7.2. Conversely, we have: (An: Natn: fibn=fipn0).

{0} fipll fip-0 = = [0,1]
& fipe(n+1) = g-fipn) L gelobl=[bab] ]l
I

{1 fip Il fip-0
& fip+(n+1)
I

(0,13
[l w0401 ] [ x=Hipn ]l

(2} fip [ fip-0 (0,1}
& fip-(n+1) = [b,a+b] [ [a,b]l =tip:n |
I
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0

In (0) we used an auxiliary function g ; in its definition we used a
parameter pattern fo introduce names for the elements of its paramstar,
In (2} we used a definition pattern to introduce names for the elements
of (tuple) fipn .

example 2.8.2 (recursive datatypes): A possible way to define, so-called,

{abelled binary frees is: a tree either is empfy or consists of a value and
two {subltress. Such trees con be represented by expressions, as follows,
The empty tree is ropresented by the empty tuple, [1, and a non-empty
iree is represented by a triple [ast], where a is the value and s
and t are the subtrees of the tree. Now, all sorts of functions on irees
can be detined; we just give a few examples, without further comments.

the number of nodes of a tree:

siz [ siz-[] 0
gsgizfa,st]l = 1+ siz-g + siz-t

1
the heighf of a tree:

0
1 + hgt-s mox hgt-t

1

hat If hat-[]
& hgt-[a,s,1]
1

axtension of a tree with an new node {one of many possibilities);

ext |[ ext-a.{] =Ia,[1,[1]
&ext-a-[b,s1] = [a, ext-b-t, 5]
|

remova! of the root of a non-empty tree:
rem  rem-[a,{]1,5] =5

&rem:[a,[buvi,e]l = {b,gtl [t=rem-[buv]]
1
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Motice that, in the last exomple, we have used parameter patterns in a
nested way. By means of mathematical induction —— e.g. on the size of
trees —— various properties of these functions can be proved; for example,
for tree s and value a:

siz-(ext-a-x) =1 + siz-s , and
rem-(ext-a-s) =
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3 On efficiency

3.0 Introduction

The execution of a computer program requires computation time and
storage space. The efficient use of these resources is a major concern in
programming [HoaC). Although space and time can, to some extent, be traded
against each other, this freedom is usually exploited in one direction only: in
order to save computation time additional storage space is used.

In order to be able to discuss the efficiency of @ program, we need
rules by means of which the amount of time and space used during program
execution can be determined from the program text. Becauvse these rules depend
on how programs are executed, we must make some assumptiens about program
execution first,

In this monograph we hardly pay attention te the space requirements
of our programs. It is rather difficulf to formulate general rules to determine a
functional program’s time and apace requirements without an elaborate study of
how functional programs can be executed. Such a study, however, exceeds the
scope of this monograph. Therefore, we confine our attention to the execution
times of our programs, and we do so in an informal way only. Fortunately, for
the purpose of designing efficient programs, this suffices,

This chapter consist of two parts. First, we develop a rather simple
computational mods( for our program notation. Second, using this model, we
formulate o few rules by means of which the fime complexity of a large class
of programs can be determined. For a more extensive account of the problems
associated with the execution of functional programs, see [Peyl.

3.1 Evaluation of expressions

fAccording to definition 1.5.2, a (functional) program is an expression
without free names; in this chapter we use "expression” for "expression
without free names™. Execution of thiz expression is computation of a suitable
representation of its value, a process that is also called evalugtion of that
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expression. The guestion now arises what a suitable representation of the
expression’s value is and how it can be computed.

One possible representation of an expression’s value is, of course,
the expression itself. Although this would moke evaluation o trivial operation,
this representation is not suitable: we require that each vatue be represented
uniquely ; i.e, all expressions with the same value should yield, when evoluated,
the same representation of thal value. Apart from this requirement, there are
no ohjections against using expressions to represent values. In order to obtain
a unigque reprasentation, we select trom sach class of expressions having the
same value a, so—called, canonical expression to represent the common value
of all expressions beltonging to that class, We call the canonical expression
representing the value of an expression the canonical form of that expression.
Preferably, canonical expressions are simple; for example, as a representation
at the number 5 , expression & is to be preferred to the, somewhat arbitrary,
expression 2+3 .

So, exacution of o program amounts to compufation of its cenonical
form. Obviously, this is only possible if the canonical expressions have been
chosen in such a way that the canonical form of each program is effectively
computable, Our program notation, however, will also contain -- as any other
nontrivial program notation: vide the halting problem —— programs that may
give rise to nonterminating computations. Hence, it is impossible to assign
computable canonical forms to @fl programs, but this is not necessary aither:
we obtain a useful program notation if we are able to assign canonical forms
to the programs in a nontrivial subset of the set of all programe. We catl
expreasions that do have canonical forms normal expressions.

3.2 Canonical axpressions

We define canonical expressions in such @ way that all boolean and
integer expressions have canonical forms. Moreover, we want all tuples
-- and, hence, all so-called finife lists, as introduced in chapter & —- to
have canonical forms, whenever their elements have canonical forms. Within
the scope of this monograph such a modest set of canontcal expressions is
sufficient.
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definition 3.2.0 (cononical expressions): The canonical expressions are the
elements of the syntactic category Cexp , defined as follows:

Cexp - Bool

Cexp =+ Int

Cexp = '[" Cexps ')
Cexps = Empty

Cexps =+ Caxp { .’ Cexp }

In this definition, Bool and Int denote the syntactic categories of the
boolean and integer constants respectively. In words, this definition states
that the canonical expressions are the boolean and inleger constants and
the tuples formed from canonical expressions.

Canonical expressions do not contain names nor where-clouses. As
a result, they do not contain free names either; hence, canonical expressions
are programs.

example 3.2.1: Here are a few canonical expressions:
5
frue
{1
[5,true]
[[1.5.true.i5.truel]
[2,3,5,7,11,13,17,18,23,29]
(5,04,02,[1,03],[0,00,I111,[3,04,00,011,[111

The last of these expressions represents the value of expression
ext-5-(axt-4-(axt-3-(ext-2-{ext-1- (ext-0-[1})))} , where ext is the function
detined in example 2.8.2.

]

The requirement that the canonical representation of a program be
unique implies that all canonical expressions must have different values.
Because this does not follow from the postulates in the previcus chapters, we
imposa this requirement explicitly.
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postulate 3.2.2: (Syntactically) different canonical expressions have ditferent
values.
O

3.3 Raduction

In general terms, an expression can be evaluated in the following way.
It the expression is a canonical expression -~ this is syntactically decidable
-- evaluation terminates. If it is not a canonical expression it is transtormed,
by application of some manipulation rule, into another expression with the same
vatue. Then, the same evalualion process is applied o the new expression.

This evatuation process need not terminate, but when it does the right
canonical form is produced:; this follows from the invariant that the expression
i5 replaced by expressions with the some value, and from the property that
oll expressions with the zome value have the same canonical form. Of course,
evaluation will certainly not terminate when the expression hag no canonicat
form. It it has a canonical form, termination depends on how the expression
is manipulated. We return to this loter, First, we discuss a number of ways
to transform expressions into equivalent expressions.

Canonical expressions consist of boolean and integer constants and of
tuple formation brackets only. They do not contain operaiors, names, where-
clauses, and guarded selections; hence, during evaluation of an expression
these must be eliminated,

Boolean operators can be meaningfully applied to boolean operands
only. Boolean expressions have caneonical forms; hence, a hoolean operater can
be etiminated by, first, evaluating its operands to canenical form, and, second,
replacing the expression thus obtained by {the boolean constant representing}
its value. Similarly, arithmetic and relational operators can be deatt with, The
only operator not fitting into this pattern is - ; the only way o eliminate it is
by unfolding {in combination with names) or by application of postulate 2.6.3
{element selection in tuples).

The overail structure of a program is an expression followed by zero or
more where-clauses. The value of the program is the value of the expression,
where the where-clauses provide definitions for all -- by definition 1.5.2 —-
namas occurring in the expression. The only way to eliminate these names is
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by untfolding (cf. rule 1.7.1.0). For a definition of the form x.y-z=FE , unfolding

x is only possible if x aeeurs in an application x-A-B . Replocement of
xA-B by Ely,z¢A,B) eliminates one occurrence of x and two -'s , but the
expression E{y,z+AB) may centain, of course, further occurrences of X%,
-, or pther names, Hence, the use of unfolding does not guarantee progress.

A where-clause may be omitted from the expression if no name defined
in the where-clause oceurs in the expression -- where-clouse elimination,
cf. property 1.7.0.2 =~ .

The proof rule for guarded selections (rule 2.5.1) gives information
about the value of a guarded selection only when its guards are boolean
expressions, In that case, a guarded selection can be evaluated, first, by
evatuating its guards until a guard is encountered with value true, and,
second, by replacing the guarded selection by the guarded expression corres-
ponding to this guard. Becouse all guards are boolean, and because of the
symmetry of the proof rule, the order in which the guards are evaluated is
irrelevant, but, in order to keep the computation deterministic, this order
should always be the same.

Both folding and unfolding are transformations that do not atfect the
value of the expression. It is typical for funclional program notations that,
when it cames to evaluation, only unfolding is used. Because of this restriction,
the process of evaluation is also called reduction: unfolding is the direct
counterpart in our notation of f-reduction in A-calculus,

Generally, expressions can be reduced in many ways. This freedom
allows & cheice among rmany different, so-called, reduction strafegies. fs
stated above, independent of the reduction strategy used, evaluation of an
expression sither does not terminate or yields the canonical form of that
expression. Moreover, @ well-known result from A-caleulus is the second
Church-Rosser Theorem -- or generalisations thereof [Hin] -~ ., which states
that a reduction strategy exists, called normal order reduction, that terminates

for every normal expression.
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3.4 Lazy avaluation

The reason why not all reduction strategies terminate for all normal
expressions is that a normal expression may have subexpressions that are not
normal themselves. In that case, evaluation of such o subexpression does not
terminate, Hence, the evaluation strategy must manipulate the subexpressions
of the program in a very controlled way.

example 3.4.0: The only transtermation applicable to xl[x=x] is unfolding
% ; this yields the same expression again, Moreover, this expression is
not canenical; so, we conclude that it has no canonical form. Evaluation of
this expression will not terminate, whatever reduction strategy is used.
Now we consider the axpression f-xI[x=x & f-y=5) . By unfolding f, the
expression can be reduced to 5, which is canonical, whereas unfolding
x gives rise to o nonterminating campulation.

]

example 3.4.1: We consider expression x-0[[x=[5x]}1 . On the one hand,
repeated unfolding of x again leads to a nonterminating computation; on
the other hand, the following computation is possible foo:

K20

{ untolding x }
[5,x]-0
{ element setection }

The latter example shows that it is sometimes necessary to evaluate
0 subexpression only parfially: the subexpression must not be evaluated
completely, because this may be impossible; yet, it must be subjected to some
evaluation steps in order to make the expression it is part of amenable for
reduction.

Normal order reduction has the property that subexpressions are only
evaluated as far as necessary for the evaluation of the expression they are
part of. Therefore, normal order reduction is also caolled or damand-driven
evaluation or lazy evaluation [Pey].
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3.5 Sharing

We consider expression x+x|[[x=E] , for some expression E not
containing x . Unfolding both occurrences of x ond subsequent where-clause
elimination yields E+E . The latter expression contains the same subex-
pression, E , twice, Evaluation of E+E amounts fo evalualing E twice
followed by addition of the twe values thus obtained: we do not axpect the
evaluating mechanism o recognise that the two subexpressions happen to be
the same. On the other hand, oceurrences of the same name in an expression,
such as the x's in x+x, explicitly refer to the same value: thereforas, it
would be reasonable to expect that in such cases the expression bound fo that
name is evaluated at most once. This can be achieved by manipulating the
expressions occurring in the where-clause. If, for instance, the canonical
form of E is 5, the computation might proceed as follows:

x+xllx=E]
{ evaluate E first }

H

x+xf{x=51]

= { unfalding x {twice) }
G+l x=51

= { et cetera... }
10

This is catled sharing: muttiple oceurrences of the same name give
rise to a single evaluation of the expression corresponding to that name,
namely as soon as evaluation of that expression is required. Without going
into the details of how this is implemented, we asaume that the use of names
bound to expressions by means of where—clauses allows shared evaluation
of these expressions. Well-known eloborations of this idea are, so-called,
environment-based and graph-reduction evaluators [Peyl.

The same phenomenon occurs with the unfolding of functions with
parameters. This involves substitution, in the function's defining expression,
of the arguments for its parameters. Thus, for each occurrence of the same
parameter a copy of the argument expression is substiluted, which again may
cause multiple evaluation of the same expression. Moreover, substitution is
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a laborious operation. Substitution, and its disadvantages. can be avoided as
follows. For expressions £ and F and nome y not occurring in F, we
have —- of. example 1.7.1.1 —-: ElyeF) = Elly=F]l . Hence, the expression
wFllxy=Ell eguals Ely=FIix-y=EN. In this way, unfolding can be
implemented without the use of subshitution, The where-clauses, such as
ly=F1 , introduced by this transformation tend themselves for sharing as
discussed obove. Therefore, we also assume that the argument expressions
in function applicationz are evaluated at most onge,

3.6 The time complexity of expressions

The exact amount of time needed to execute a program strongly depends
on details of the particular implementation used. As is usual in discussions
about programming, we consider these details as irrelevant; therefore, we
cantine ourselves to the time complexity of our programs,

In the case of functional programming, we are often interested in the
design of {a definition of) a funclion; i.e, the program is intended to be used
in function applications (in other programs), it is not intended to be execuled
itsel{. The time complexity of this program then is a function with the same
domain as the tunction represented by the program: for funclion £, the time
needed to avaluate the application F-E usually depends on the value of E.
S0, with F we associate a function TF with the interpretation that TF.x
denotes the amount of time neaded to evaluate F.x . Here, we adopt the con-
vention that TF-x does not comprise the evaluation of the argument supplied
for x . Hence, the amount of time needed to evolugte F-E is TF.E + "the
time needed to evaluate £ (as far os needed)”.

For the sake of brevity, we call "the amount of time needed to evaluate
E” simply the cost of £. Notice that this is a function on the set of expressions,
not on the set of their values: ditferent expressions with the same value may
have different costs. Thus, we have: "the cost of F-E" = TF.E + "the cost of E”.

We now discuss how to determine TF for given progrom F . We
assume thal progroms are executed with lazy evaluation and sharing. We are
only interested in the time complexity of our programs, ond we assume the
boolean, orithmetic, and relational operators to have 0(1) time-complexity.
Therefore, we use the following, ebstract notion of cost: in the process of
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evaluation, we only count the number of unfoldings. We stipulate that unfolding
is the essential operatien in the evaluation process and that the number of
unfoldings used is sufficiently representative for an expression's cost.

definition 3.8.0 (cost of an expression): The cost of an expression is the
minimal number of unfoldings needed to evaluate it.

a
definition 3.6.1 (time complexity of a function): For function F, the time

complexity of F is the function TF with, for value x :
TF-x = "the cost of Fx"

ILa, TF-x is the minimal number of unfoldings needed for evaluation of
F-x , not counting the cost of x .

Recursive definitions of funcltions give rige to, so-called, recurrence
relations for their time complexities. By solving these recurrences relations,
by means of "ordinary” mathematical techniques, we obtain explicit character-
isations of o function’s time complexity.

3.7 Examples
We discuss the time complexities of a few examples.
axample 3.7.0: We consider function fac defined by

fac.0 =1
& fac:(n+1) = (n+1) «fac.n

With Titac for fac's time complexity, we obtain recurrence relations
for Tiac in the following way. Evoluation of fac:0 requires unfolding
fuc once; hence Tfac-0=1 . Evaluation of fac-(n+1) requires unfolding
fuc  once, giving (n+1)xfac-n ; evaluation of this expression involves
evaluation of fac-n , which requires Tfoc.n unfoldings, Hence,

Tfac-(n+1) =1+ Tfac-n, for n,0<n . Thus, we obtain:
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Ttae-0 = 1
Tfag-(n+1) = 1+ Tfaen , Ogn

The solution to these recurrence relations is Tfac-n=1+n ., for naluratl o |
[m]

In this axample, we have not taken into account the use of parameter
patterns in the function’s definition. In chapter 2 we have defined parameter
patterns by means of additional names defined in where-clauses. In the above
example, we have, for the sake of simplicity, not counted the number of
unfoldings needed to eliminate these additional names, This is harmiess, and
throughout this monograph we shall ignore parameter patterns in efficiency
considerations,

example 3.7.1: We consider function fib defined by
fib-0 =0

& fib-1 1
& fibs(n+2) = fib-(n+1) + fib+n

13

With Tfib for fib's time complexity, we obtain from this definition the
tollowing recurrence relations:

Tiib-0 1
Ttit+1 = 1
THib-(n+2) = 1+ Tfib-(n+1) + Thibin , O gn

The solution to these relations is Tfih-n=2%tib-{n+1)} -1, for n,0<n;
g0, we have: Tfib-n is O(fib-n) .

]

oxample 3.7.2: We consider function fip defined by

fip-0 = [0,1]
& fip-(n+1) = ge(fip-n) [ g-la,b]l=[b,a+b1ll

With Ttip for fip's time complexity, we obtain from this definition the
following recurrence relations for Tfip :
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THip-0 1
Ttips(n+1) = 2+ THpn , 0gn

1

Evaluation of fip-{n+1) requires unfolding tip once, evaluation of fipn
and unfolding of g hence the relation Tfip:{n+1) =2+ Tfip-n. The
solution to these relations is Tfipn=2«xn+1, for n,0gn; hence
Tfipsn is Oln) .
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4 Elementary programming techniques

4.0 Introduction

In this chapter we introduce a number of elementary technigues for
the derivation of programs. These techniques are simple but, when applied in
combination, very effective. They are elementary in the sense that they are
almost always applicabls. The techniques presented here are not new: probably,
every programmer uses them, either conaciously or subconscicusly. In this
chapter we try to increase their effectivensss by naming and formulating them
explicitly, and by providing some heuristic guidance for their use. Mareover,
we intend to show that these techniques lend themselves very well for a
cateulational style of programming. This style bears a strong resemblance with
the, so-catled, transformational siyle of program development by Burstall and
Darlington [Burl[Dargl. There is, however, one, slight but subtle, ditference.
We discuss this more extensively in section 4.8,

Throughout this chapter we use a single example to illustrate the use
of the techniques. We call this example the running example. 1t concerns the
darivation of programs for:

(Si-0¢i<N; XY , for given natural N and integer X

Here, we impose the odditional restriction that addition and meltiplication are
the only integer operations used. For the sake of clarity, we shall corry out
all derivations in this chapter in smatl steps, with explicit justifications of
these steps.
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4.1 Replacemeni of constants by variables

For special values, in our running example, of the constants N and X |
the problem allows simple, od hoe, solutions, For example, we have:

{Si:0gi<?: XY 1+X , and
(Si:0gieN: 1) =N

The expressionz 1+X and N are, although solutions to instances
o} the same problem, not very much alike. This betrays the ad hoc ways by
which these solutions have been obtained. If N and X are not so special, we
may replace one or both of them by variables ranging over exactly specified
domains. Thus, we express our recognition that the way of solving the problem
should be -- aclually, this is @ design decision —— independent of particular
properties of these canstants.

Reptacement of constants by variables is a form of generalisation: the
value is turred inte a function. This enables us to look for useful relations
belween the function’s value in different points of its domain. If these relations
lake the form of, so-called, recurrence relations, then we may use them as
a recurgive definition of the funchtion.

Because aven relalively simple expressions contain many, either
visible or "hidden”, consfants that are suitable condidates for replacement by
variables, we have a methodological problem here: how do we identify the
"right” candidates for replacement? Observing thal we are heading for a set of
recurrence relations, we propose to start os modestly as possible. We select
a constant that can be replaced by o variable ranging over a domain on which
mathematical induction is possible, Notice that mathematical induction is needed
to justify the correctness of the recursive definiticns to be derived. This
megans that the domain of the function must exhibit a partial order in such a
way that it is well-founded. This requiremant restricts the set of candidates
for replacement drastically.

In our running exampie 0 and N are suitable candidotes, whereas

X is not. Genarally, quantified formulae lend themselves for induction on the
size of the range of quantification, provided that it is finite. Replacement of
aither 0 or N -- or both —— is a special case of thia. If we replace N by
a variable n and if we name the function thus introduced f, then we abtain
the tollowing specification for f -
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(Am:Natn: fon = (Si:0gi<n: X))

In this example the choice of Nat for the range of n is rather "natural™
first, n represenis the size of the range of the guantification, and, second,
with its usual ordering Nat is well-founded.

Because constant N has been replaced by variable n , it immediatety
follows that f-N is an expression for the value we are looking for. In order to
turn it into o program, we only have to posifix this expression with @ where-
elause containing a definition of { satisfying the above specitication.

4.2 Recurrence relations

In this section we develop a programming style based on the derivation
of recurrence relations for the function for which we wish to construct a
defining equation. This always invelves case analysis: for the minimal elements
of the domain, we strive for explicit -~ ie. nonrecursive -- expressions,
whereas the relations for the other elements may be recursive. The recurrence
relafions thus obtained constitute a recursive definition of the function. The
subsequent transformatien of the recurrence relations into defining equolions
is mainly a matter of encoding these relations in the program notation. Thus,
we obtain, in the program notation, a detinition satisfying the specification.
Provided that we carry aut the derivation in a sufficiently foermal way -~ ahout
which more in section 4.8 -- , the derivation of the program simultaneously
constitutes its proof of correctness.

For function {, specified in the previous section, we derive o set of
recurrence relations, as follows:

{0

{ specitication of f }
{(Si:05i<0: X))

{ empty-range rule (0 is the identity of +) }
Qo .

and:
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f-{n+1)
= { specification of f }
(Si:0gi<n+i: X
= { range split )
(Bi:0gi<n:X) + X"
= { induction hypathesis (specification of 1) }

fon + X"
We have obtained the following two relations:

-0 =0
fo(n#t) = fn + X", Ogn

I we allow X" as an expression we can encode these relations inte the
following program. This is a program for our original problem, in which we
were interested in f-N only,

n
L=

program: NI 0
& f-(n+1) = ton + X7
|

If we do not allow X" as an expression in our programs, we con
chooss between two strategies to eliminate it. Either we treat the subexpression
as a problem in isolation by trying te derive an equivalent expression for it,
or we try to derive other recurrence relations in which this subexpression
does not occur. The former strotegy is explored in the next sections; here,
we try the latter by redoing the derivation of a relation for f-(n+1) :

f-(n+1)
{ specification of f }
(Si:0¢iens1: X"
{ range split, but in a different way }
X2+ (Si:1gi<n+e1: XD
{ 1 s the identity of » , dummy substitution: i i+1 }

IF
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1+ (8i:0gien: X*H)

{ X" =Xw X' | distributes over + }
1+ Xx(8i-0gi<n:X)

{ induction hypothesis (specification of 1) }
1+ Xxfm

This yields:
foln+1) = 1 + X»fn |, Ogn
From this relation and the provious one for .0 , we obtain our next program:

programi; NI f-0 =0
& f-{n+1) =1 + Xxfn
1

O

convention 4.2.0: From here enwards, we combine range splits and subsequent
dummy substitulions into a single step, without explicitly mentioning the
substitution. Mestly, we are heading for a quantified formula with a range
of similar form as in the formulo we start with. In such cases, we have
na choice as to what substitution to perform.

4.3 Modularisation

If, in a derivation, we encounter o subexpression -- such as X" in
our example -- that is nol yet @ permizsible expression in the pragram
notation, then we may decide thal this subexpression formz a subproblem
to be salved in isolation. To solve this subproblem we con apply the same
programming technigues. In the case of our example, we may consider the
paramater n in X" as a constant that may be replaced by a natural veriable,
S0, we may rewrite program0 as follows,
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program?; NI {0 =0
& f{ntl) =fn+ gnll g: (Am:0gm:gm=X") 7
)

[m]

Notice that in this program g's “definition” itz not an admissible equation,
it only serves to denote g's spacification in a compact way., The correciness
of f's definition only depends on this specification, not on tha actual definition
we supply later for g . Thus, we retain the freedom to choose any definition
for g we like that satisfies this specification. For g, we can derive the
following recurrence relations:

g-0 1
g-lm+l) =X % gm ,0¢m

By plugging these relations, in encoded form, into program2 we obtain program3.

program3: f-N I f.0 =0
& f:(n+1) = fn + gon [ g0
& g-lm+1)
|

1
-

X & g-m

i

Let Tin and Tg-n denote the time needed to evaluate fn and gn
respectively, Then, we have:

T4-0 =1
T-(n+1) =1 + Tfn + Tgen
Tg-0 =1

Tg-{n+1) = 1 + Tgen
The solutions to these recurrence relations are:

Tin =nx{n+3)/9 +1
Tg-n =n+1
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We conelude that program3 has quadratic time complexily.

4.4 Introduction of additional parameters

A different way to eliminate o subexpression is to replace it by a fresh
name and to add this name as an additional parameter to the function for which
we are developing a definition, Thus, the function is tronsformed into a new
function with ane more parameter. Al first sight, this transformation only
seems o make things worse: now, the subexpression must be supplied as an
argument in each application of the function. Yet, the trick does sometimes
work, provided that the following two condilions are met. First, in each
recursive application of the function, the argument to be supplied for the new
parameter can be oasily expressed in terms of the function's paromsters, the
new paramater included. I.e, on the one hand, the introduction of the new
parameter generates the obligation to supply an argument for it in each recur-
sive application; on the other hand, the new parameter provides additional
information that may be used to meet this obligation. Second, in each nonrecur-
sive application, the other arguments must be so special that an argument for
the new parameter can be constructed easily.

In order that the replacement of a subexpression E by a new para-
meter y dees nol offect the value of the expression containing E, y must
represent the vaiue of £ . Therefore, we formulate the specification of the new
funetion in such o way that its precondition implies y=£ . More generally,
it is not necessory to replace E by y: it suffices to introduce the new
parameter in such a way that expression £ can be replaced by a sufficiently
simple expression in terms of y and, possibly, the other parameters.

Formally, the transformation can be described as follows. We consider
funetion f, with the following specification, in which x represents all of f's
parametars:

(o) (Ax:Qx: Rexe(f-x))

By introduction of a new parameter y we obtain function g with the tollowing
specification, in which P fixes the relation between the new parameter and
the old ones:



73

(&0)] (Ry,x;: Q-x AP-y-x; Rex-(g-y-x)}

Any application f-£ may now be replaced by g-F-E , for every F satistying
poFeE .

If we have already derived a definition for f . then we may also phrase
g's specification in terms of . as follows:

(2) (Ay.x: Q-xAP-y-x: gryx=fx)

Notice that (2) is stronger than (1) | for we have: {0} A{2)={1) . Ue may
now use the definition of { lo derive o program for g . Applied in this way,
tha technique is a form of program transformation.

To illustrate both failure ond success of this technique, we apply it in
two different ways te our running example,

For the first case, we toke the following recurrence relations, obtained
in section 4.2, as our starting point:

-0 =0
folne1) = fn+ X7, 0gn

By introduction of a new parameter y to represent X" we obtain function g
with the following specification -- notice the substitution nen-1  imposed
by the parameter pattern —- :

{An,y:Natnay=X""1: gy-n=fn)

This specification is, however, awkward to use: we now have N = g-xN-L.N
which contains the, equally undesirable, subexpression ¥N=1 | Moreover, this
expression is undefined for N=0 . (This could be remedied by weakening
the precondition for y to n=0v y=X""" or by replocing it by y=x")
Furthermore, for g-y{n+l} , assuming y=X", we derive:
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g-y-(n+1)
= { specification of g. y=X"}
f-{n+1}
= { definition of f }
fin 4 X7
= {y=X"}
fn+y
= { induction hypothesis (specification fo g) }
g X"t 4y
{y=xX"1}
g-{y/X)-n +y

The formula thus obtained requires the use of division, which is meaningful for
non-zero X only. Because of these complications, we reject this allernative,

Our second attempt is inspired by the symmetry of addition, on account
of which we may rewrtte (5i:0<i<N:X) |, by means of a dummy substitution
ieN-1-i , into (8i :Ogi-:N:XN“i") . Replacement of the first occurrence
of N yields the following specification for f:

(An:0gngN: fon = {8i:0gi<n:XN171))

In this specification, we have restricted the range of quantification to ng N,
because we wish fo consider XM~ for natural exponents, ie. for i:i<N,

only,

remark 4.4.0: That it iz better, in this example, to replace bHoth occurrences
of N by n does not concern us here.
|

By derivations similar to the ones in section 4.2, we obtain the following
recurrence relations for f:

(3 f0 =0
(8)  folntt) = fon + XN pgneN
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By introduction of a new parameter y to represent XN™" we obtain function
g with the following specification:

{An,y:0gngNAy= XN gegen =fen)
Now, we have f(N=g:1:N , because XMN=1  Furthermore, we derive:

g-y-¢

{ specification of g }
0
= {13))

0,

and:
gy (n+1)
= { specification of g }
f-{n+1)
= {(4)}
fop 4 ¥N-1-n
= { precondition of g-y-(n+1}: y=xXN"(P+11}
tn + y
= { induction hypothesis (specification of g) >
g_xN—n_n vy
= { XN o a XN precondition of geg-(net) )

g-{Xxyln 4y

Thug, we arrive at the following program,

programé; g-1:N I[ gy-0 =0
& gy-(n+1) = g-(Xwyden + y
1
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45 Tupling

The purpose of the technique called fupiing is to increcse a program’s
eificiency, Tupling can be applied to a set of function definitions, provided
that these functions have the same domain and that their definitions exhibit the
some pattern of recursion. In that case, we can introduce a new function, with
the same domain as the functions we started with, whose value is a tuple; the
elements of this tuple are the values of these functions. Due to the similarity
of the patterns of recursion of the corresponding definitions, a recursive
definition for the new function can be constructed easily.

Tupling can also be used to generalise a function before any program
has been derived for it. This amounts to extension of the function's range. In
this respect, tupling and introduction of new parometers are complementary
techniques: the latter can be considered as extension of a function’s domain,
In most cases, however, tupling is used for program transformations directed
at improvement of the program's efficiency.

We apply tupling to program3 (section 4.3) by introducing function h
with specification:

hon=1{fn,gnl] ,04n
We have fn=h-n-0 and h-0=[0,1] : furthermore, we derive:

hef{n+1)
{ specification of h }
[f{n+1), gelntt) ]
{ unfolding f and g {according to program3) }

[fn+gn, Xxgn]

{ introduction of names for f-n and g }
[ath, X#b} Il {g,bl=[fn,gnlll
= { induction hypothesis for h }

[ath, X+b 1 I[ {a,b)=hn ]

H

Thus, we obtain the following program.
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programs: h-N-0 [ h-0 = [0,1]
& he(n+1} = [a+th , X«b 1 I[ [a.bl=hxn 1l
1

O

With Th-n dencting the time needed to evaluate hn , we now have:

Th=0 =1
Th-(n+1) = 2 + Th-n

From these relations, it follows that Then = 4#n+1; hence, programG has
linear time complexity.

remark 4.5.0: In example 2.8.1 we have shown thal the same program can be
coded in three different ways. For he(n+1) , we could also have used as
definition: h-{n+1) = c-(h-n) [ e-la,b]l = Ea+b, X«xb] )l
Notice that the program for fip , in example 2.8.1, coan be derived by
tupling the functions fib and fibe(+1) , where fib hos been given in
example 2.7.2.

4.6 Generalisation by abstraction

In the previous sections we have derived vorious programs for our
rurning example. These programs are based on different recurrence relatians;
moreover, they have different properties ond different time complexities.
Apparently, the recurrence relations should ba chosen judiciously. In order
to provide some more evidence for this conclusion, we derive a program
with O(log:N) time complexity. This degree of efficiency con be obtained if
we can derive o recurrence relation that expresses f.n, for even n, in
terms ot f-(n/2) , or, equivalently, that expresses f-(2xn) in terms of fn .
Therefore, we derive, for natural n :
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f-{2#n})
{ specification of f }

(Si:0¢i<2xn:X)

= { range split, in equal parts }

(8i:0gi<m:X") + (Si:0¢i<n:X™)
{ * distributes over + (twice) }

(1+ XM= (8i:0¢i<n:¥)

= { induetion hypothesis (specification of {) (see below) }
(1+X") % fn

The recurrence relation thus obtained is:
f-(22n) = (14X wfn , 0gn

This relation holds for all natural n and functions f satistying f's specHi-
cation. In order that it be useful os a recursive definition, however, the last
step in the above derivation must be an appeal to the induction hypothesis;
this requires that n<2+«n , i.e. n must be positive.

The relation derived ahove contains subexpression X7 again. Instead
of eliminating it we try to avoid it by deriving another recurrence relation.
The following derivation is based on the observation that a range split into
equal parts can also be obtained by distinguishing even and odd numbers.
The validity of this way of splitting depends on both the cssociotivity and the
symmetry of + :

fo (2%}
{ specification of § }

(§i:0gi<2xn: X))

= { range gplit, distinguishing even and odd i }
(Si:0gi<n: X2 4 (§1:0gi<n: X2

= { = distributes over + {twigce) }
(1+X)%(8i:0gi<n;:X¥N)

= {xP=A)
(1+X)%(8i:0¢i<n: (XH)1)
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Now we are stuck: the expression (8i:0¢i<n;:(X2%)') looks very much
like, but differs from, our original expression. The only difference is that X
has been replaced by X2 . Therefore, we may consider the two expressions as
instances of a single, more general expression. This amounts to ¢ posteriori
replacement ol constanls by variables. In our example, both expressions
ore instanges of (Si:0gi<n:x'), for integer x . Variable x is a new
parameter of the function, if we call the function thus introduced g, then
its specification is:

(Ax,n:Intx ANatn: gex-n = {Si:0gi<n:x'})

We gatl the technigue used here generalisation by abslraction. Notice
that the same effect could have been achieved by replacement of the relevant
constants by voriables right from the start, It is, however, not clear a priori
what the relevant constants are. The crux is that fwo -- or more, for that
matter --  slightty different expressions provide more information than
one. Notice that in this way the generalisation nesded is, to a large extent,
dizcovered by calculation, Moreover, pravided that the caleulations leading to
this discovery have been carried out sufficiently caretully, these calculations
usually need not be redone for the generalization: if the derivation does not
depend on properties lost in the generalization, it still pertains, mutatis
mutandis, fo the generalised case. Thus, this way of working is not necessarily
inefficient,

In our example, no properties, except being an integer, of X have been
used. Hence, without further formal labour, we obtain the following recurrence
ralations for g from the corresponding relations for f:

g+x-0 =0
g-x-{n+1) = goen + x" ,0gn
gex-(n+1) = 1 + xxgxn L, 0gn

gexe(2¥n) = {1+ xM*gxn, 15n
g% (2%n) = {1+ x) xg-x®n , 1gn

Using the firsl, the third, and the fifth relation, we construct the {following
program, in which peven:n and podd:n are used as abbreviations of
lgnanmod2=0 and 1gn Anmod2=1 . Its time complexity is O(log-N) .
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program6: gXeN [ gox-0 =0
& g-x-n = podd-n > 1 + xxg-x-{n-1)
0 peven-n =+ (1+x) % g-Gexx)-(ndivz)

I

4.7 Linear and tail recursion

In this section we discuss a common pattern of recursion, called finear
recursion, and a speciol case thereof, called tail recursion. Tail recursion
is of interest for, at least, two reasons. Firsi, tail recursive definitions tend
to require less storage space for their evaluation than generally recursive
definitions [Peyl. Second, tail recursive definitions can be transtated into
repetifions in a sequential-program notation in a straightforward way. This
is imporfant when we use functional programming to design programs to be
implementad in ¢ sequential-program notation,

The transformation of a recursive definition into a tail recursive one
is an example of a progrom transformation, In this area, mueh reseorch has
already been done [Burl(Dar0l[Henl. The tai! recursion theorem derived in this
section is not new, but its derivation is a nice application of generalisation
by abstraction: by means of this technique, the theorem emerges in a straight-
forward way.

filthough we use functional-program notation to define functions, the
discussion in this section pertains to functions in general; i.e, its validily is
not restricted to functions defined in our program notation.

definition 4.7.0 {(linear recursion): A recursive definition of a function is
called linearly recursive it each unfolding of an application of that function
generales at most one recursive application of the function.

a

The fallowing definition of function F may be considered as the prota-
type of a linearly recursive definition:



81

o} Fox = {=b-x = f-x
I b-x =+ h-x & F-(g-x)
)

In the following discussion, U, V, end W are sets, ¢ denoles a
partial order on U, and b, f, g, h, and @& are functions with the following
properties. Properties (1) through (5) stale the types of these functions,
whereas properties (6) and (7) enable us to use mathematical induction
on U. From these properties it follows, by mathematical induction on U,
that F haos type U-W .

(1) {Ax: U-x:Bool-(brx) ) {"b has type U = Bool™)
(2) (Ax U nmbex s Wa(fix) ) ("t has type Un~b ~» W)
(3) {(Ax:Uxa b-x:U-(g-x}) {"g has type UNb ~» U")

(4) {Ax:Uxa box:V(hx)) {("h has type Unb) =+ V")
(5) (Ayz:Vyallz:W-{yez)) ("& has type VxUl » W")
{6} {U.£) is well-founded

(7} Rx:Uxa bax:gxax)

Strictly speaking, function h in definition (0} is superfluous: define @
by x®z=hx®z and replace ® by @ . The redundancy provided by the
presence of h | however, teaves us more freedom in the choice of @ .

The purpose of this discussion is to explore what we can derive about
F by application of generalisation by abstraction. We restrict our ottention to
the spacial case V=U!; then, @& is a binary operator on Wx W . We observe
that F-x and h-x@F-(g-x) are instances of the more general expression
y@F-x, provided that @ has o left identity, say, e then, Fx-e@f-x.
Theretore, we assume (8) , with:
{8) e is a lett identity of @
We now introduce function G with the following specification:

Ay Wyalx: Gyx=yseFux)

On account of this specification and (8) , we have (Ax:Uax:Fox=0Gex) |
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Using mathematical induction on U . we derive for G :

case -b-x:
Goyex
{ specification of 6 }

Yy Fx
{ unfolding F, using -b-x }

y@fx
case bex:

Gey-x

{ specitication of G }
yof.x
{ unfolding F, using bex 3

1

y& (h-x®F-(g-x))
{ assume (9), see below }
(y®h-x) @F-{gx)

{ (7) Ab-x * g-x<x : induction hypothesis tor G }
G+ (y@hex)-(gx)

Due to (1) , the case analysis -bxvbex is exhaustive. In this derivation
we have assumed (9) , with:

{(9) @ is associative
Putting the pieces together, we abtain the following recursive definition for G :
(10} Geyox = (abix » yodfx

1 b-x + G- (yehx)-{g-x)

)

In foct, we now have derived the following theorem.
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theorem 4.7.1 (tail recursion theorem): For associative @ with left identity
e, and for F and G defined by (0) and {10) , we have:

(Ax:Ux; Fix=06-gx)

The definition of G is a special kind of a linearly recursive definition,
called a fail recursive definition. Generally, the definition of function H s
tail recursive if it has the following form:

H-x = (mbx =+ f-x
0 bex » H-{g-x)
)

Tail recursive definitions can be easily translated inte sequential programs:;
here is a sequential program for the computation of H«X |, for given X ; in it,
we use a variable x whose role resembles the role of H's parameter in the
above definition:

% =X { invariont: H-X=H-x }

ido bex » {Hx=H{gx) } x:=gx
od { H-X=H-x A =b-x , hence: }
{HX=fx}

By instantiation of this program, we obtain a seguential program for
the computation of F-X ; this amounts to coding (10} as a sequential program
for the computation of G-9-X ; hence, its invariant would be G-g:X=G-yx .
By application of G's specification, we can reformulate this invariant directly
in terms of F , the invariant thus obtoined is usually calted a fail invariant.
This gives the following program;

y.x 1= eX { invariant; F-X=y®F-x }
ido b-x -+ y.x = ydhex,gx

od

{ F.X =y@tx}
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Depending on the actual siructure of the definition of F —- in our
case; (0) -- the above theme allows many variations. Therefore, it is not
so much the tail recursion theorem itself but its derivation, based on genera-
lisation by abstraction, thal is important. To illustrate this, we use the same
approach to derive a sequential program, with O(log:N) time complexity,
for our running example. Although slightly more complicated, the following
derivation essentially is the same as the derivation of the tail recursion
theorem, It depends on additional algebraic properties such as that 0, apart
from being an identity of +  also is a zero of * , that % is associative,
et cetera.

From section 4.8 we recall that gX:N provides a solution for the

problem, and we recall the following recurrence relations for g :

gx0 =0

gex-{n+1) = gexen + x" ,0gn
gex-{n+1) = 1 + xxg-x-n , 0gn
gexe{24n) = (14+x") 2 gxen , 10
grxe(2xn) = (1+x)xg-x=n, 1gn

Thesa relations provide several possibilities for generalisation by abstraction,
giving rise to formulae such as =z+yxgxen, or z+(l+y}l*gxn, or
yxgex-m+zxx" . Selecting the first one, we intreduce function h with the
following specification, as a result of which we have goon=h0loen

(Az,u,%n:: hezyx-n = 2 + Yk gex-n )

Using the first, third, and last of the recurrence relations for g, we can
deriva the following relations for h:

fa2eyex0 =z
h-z-y-x-(n+1) = h-(z+y)-(yxx]xn ,0gn
hez-yrx={2%n) = hezs(yse(14x) ) {xrx)in , 1gn

Encoding these relations in the program notation yields the following program.
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program7: heOe1oX-N [ h-z-y-x-0 = =
& hvz-ysxen = (podden =+ he(24y)-{yxx) =% (n=1)
0 pevan-n =+ h-z-{yx(1+x} )« {xwx} - (n div 2)
)

The definition of h , in this program, is tail recursive. From this
program, the fellowing sequential program con be derived. FAs before, by
instantiation of the standard invartent h-0-1-X:-N=h.z-g-x-n , the invariont of
the program’s repetition can be formulated in terms of {unction g .

programg: z,yx.n = 0,1, XN {invariant: g-X-N = z + ywxg-x-n }
ido podd-n 2 z,yn = zZvy, yxx, n-1
0 pevenn = yx,n = yx(lex)  xxx ndivz
od
{z=1(5i:0gi<N:x"))

4.8 Mainly on presentation

In this section we discuss the way in which we present derivations of
programs. Moreover, we compare our approach with the, so—called, Burstall/
Darlington [Bur][Dar0] style of program develepment.

In order that program development by calculation be practically usable,
the process of formula manipulation should be sutficiently efficient, Particularly,
we wish to avoid duplication of formal labour, and we wish to avoid copying,
over and over again, large formuloe that remain constant during the derivation.
The desira to avoid duplication of work brings about that we do not want 1o give
separate, a posteriori, proofs of correctness of our programs, We see to it that
the derivations of our programsa simultaneously are their proofs of correctness.
Ideally, the derivation is presented in such o way that it is no longer than the
corresponding a posteriori proof would have been. This approach leaves us the
freedom to decide how much heuristic explanation will be included in the
presentation; the basic pattern of the presentation, however, will be largsly
independent of this decision. Finally, whether or not heuristic explanation is
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provided, the presentation should be such that it is clear what steps in the
derivation are design decisions and what steps are mere simplifications.

By means of o very simple example we illustrate a few different ways
to present derivations. The example is the derivation of a recursive definition
tor function f, having type Nat=Nat . satisfying:

(0) (Ai:0ci: hi=i?)

The example is a little bit insipid in the sense that (0} can be strenghtened
immediately to (Ai::f-i=ixi}, which is an admissible equation, but this
need not bother us hare,

A derivation thal clearly shows the correciness of the design is:

(Ai:0gi:ti=i®)

& { mathematical induction on Nat }
f0=0 A (Ri:0gi: f-i=i% f-(i+1) = (j+1)%)
& { calculus }

f-0=0n (Ai:0gi: f-(i+1) = f-i+2xi+1)

The formula thus obtained can be considered as an admissible equation for f:
it can be encoded in the program notation as follows:

(1) f0=0 & f{i+1) = f-i+2xi+1

The correctness of this definition follows from the fact thal. in the
abave derivation, the specification has been strengthened only. Observing that
equality is symmetrie, we may rewrite the equation f(i+1) =fi+2«i+1 to
the equivalent f-i = f-(i+1) - 2xi- 1 ; hence, what is wrong with the following
definition?

(2) f0=0 & fi=f(i+1)-2%i-1

To analyse thig definition, we obgerve that it is, gccording to definitions 2.7.1
and 2.7.0, an abbreviation of:
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foi={1=02>010 ip0 > f-(i+1)-2%i-1)

With the proof rule for guarded selections, the strongest proposition we can
prove about this f is: (fi0=0 v h0=t1-1) A (Ri:lgi fii=flien)-2wi-1) |
which iz weaker than what we need, viz. f-0=0 A (Ri:0gi: f-i=f-(i+1)-2%i-1) .
Hence, (2) must be rejected, The moral of this story is, of course, that the
arguments in recursive applications of a function must be less than the para-
maters of the function; here, "less than™ refers to the partial order imposed
anto the function’s domain to justify the use of mathematical induction.

The above derivation is rather short, because the example is so0 simple.
In more realistic examples, we preter to deal with the two cases -- "base”
and "step”, so to speak — , ariging from the use of mathematical induction,
separately. Moreover, we do not want to carry around the (constant!) induction
hypolhesis, The proof obligation is to show that the detinition derived satisfies
the specification of the function. The induction hypothesis always is that the
definition satislies the specification tor all arguments /ess than the argument
under investigation. That is, given the function's specification and given the
partial order used on the function's domain, it is clear what the induction
hypothesis should be, Therefore, we can afford not to write down the induction
hypothesis explicitly.

For our simple example, these observations lead to a derivation of the
following form. Starting from (0} | we use mathematical induction on Nat ,
and we derive -- the base -- :

f-0=0
& { choose as definition: -0=0 }

true

The step in this darivation looks rather stupid, but it really embodies a design
decision: for instance, we also could have chosen fix=x or fx=x=%xx . In
view of the simplicity of (0) , the latter one iz even a better proposal. Yet, the
choice {.0=0 is the least committing one, because it resiricts our freedom
to defina f in afher points of its domain as little as possible. In this respect,
we have no real freedom here. In practice, we omit the last step and record
this design decision separately, for instance by writing down (a fragment of)
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a program text.
Next, we derive, for natural i -- the step — :

Bliv1) = (i+1)?

= { algebra }
tlita) = i +2xi+1

* { induction hypothesis for f }
felitl) = f-i+2%i+1

The formula thus oblained can be used as a detinition; combination with the
result obtained for the base case then yields definition (1)

The above derivations have been carried out in the domain of predicate
cateulus, This is particularly useful if the specificetion takes the form of an
implicit squation for the vatue specified by it. When, as is often the case with
specifications of functions, the specification provides an explicit formula for
the function's values, then the derivation con also be carried out in the domain
of values. This avoids copying the constant left-hand side of the equation. For
our example, such o derivation takes the following form.

f-0

= { specification of { }

Hence, we choose {-0=0 as a definition, Furthermore, for natural | we derive:

f-(i+1)

{ specification of { }
(i+1)?

{ algebra }
P24 2+ 1

1

= { indugtion hypothesis for f }

fol + 2%i + 1

Hence, for this case, we choose f-(i+1) =%i+2xi+1 as a definition. Again, by
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combination of these results we obtain definition {1} .

In the Burstall/Darlington style of program development, our small
example problem would be solved as follows. This style is fransformational,
which requires that the specification already is a, possibty very inefficient,
program. In cur case, (0) may be encoded as a defining equation as follows.

(3) f-4 = (0gi = i%i)
We now derive:

f-0

= { {3) . i.e: unfolding t }
o,

and:

feli+1)

= { (3}, i.e: unfolding f }
(i+1)x(i+1)

= { algebra }
1%+ 2%+ 1

= { (3) . i.e: folding f ¥

fai+ 2% 41
Thus, we may add the foilowing definitions to our set of definitions for f :
(4} f0=0 & f(ivt) = f-i+2%i+1

Notice, however, that we actually have derived (3}=(4) only: by ihe
above derivation, we have weakened instead of strengthened the specification.
In order to conclude that (4] indeed is a correct definition selisfying (3) |
there is o remaining proof obligation. Burstoll and Darlington catt this the
obtigation to prove fermination, and state that the programs thus obtained are
partially corract only. Apart from this, the derivation given here corresponds
excctly to the last derivation given above. The only flow in the derivation
given here is the step with hint “tolding t” : it we had included an appeal
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to the tnduction hypothesis, then we would have obtained a correct program
without further proof obligations. In this respect, we wish to stress that the
use of indugtion, right trom the stert, has heuristic value too: il restricts the
freedom we have when we apply folding. Phrased differently, in the Burstall/
Darlington style the programmer needs some clairvoyance in the application
of folding, in order to guarantee that the remaining proof obligalion can be
met. [t is, for instance, possible to derive the wrong definition (2} in this
way, but for this definition termination cannot be proved.

4.9 Discussion

The technique of generalisation by abstraction is important for two
reagong. First, if reduces the amount of foresight needed by the programmer
considerably, Tt is easier to discover what constants ore candidates for
replacement by analysing the differences between a number of similar
expressions than to guess for a single expression what its relevant aspects
are. Therefore, it seems to be a wise strategy to replace only one constant
by @ variable, on whose domain the induction will be based; by the subsequent
derivation of recurrence relations we try to discover what else iz needed.
Second, due to its general appticability, the technique opens up the way to a
large class of programs. For our running example, we have shown only a few
ot these programs; many more variations are possible.

The reverse side of this coin ig that programming in this way cannot
be & blind, mechanical activity. Even for & relatively simple problem as our
running example, a large number of recurrence relations exist that can be
used in many ways. This being so0, we prefer technigques that identify as many
interesting solutions as possible in an early stage of the design process, ond,
of course, without causing an explosion of formal labour.

The programs we have derived fer our running example are not com-
pletely eguivalent, in the sense that their correctness depends on different
algebraic properties of 0, 1, +, and =* . By careful identification of these
propertias we digcover for what values X the programs may be used. We
have, tar instance, not really used that X is an infeger; all programs derived
in this chapter are correct when X is element of @ ring with multiplicative
identity, X may, for instance, be a matrix.
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5.0 Introduction

In this chapter we define {/sts and we develop some theory tor their
use. Lists form a special kind of functions aither on initial segments of Nat or
an Nat itself. The former are called finite lisfs, whereas the latter are called
infinite lists. The values of a list in various points of its domain are called
elements of the list. Lists differ from other functions on (initial segments of)
Nat in the way they are implemented. The difference is that esach etement
of a list is assumed to be evaluated at most once; the result of this evaluation
is stored, so that it can be used more than once without further evaluation,
On the other hand, multiple applications, to the same argument, of a function
that is not a list will generally give rise to multiple evaluations of that some
application. Thus, lists can be used to save computation time, at the expense
of storoge space: in this respect, lists are the direct counterpart of arrays
in sequential-program notations,

From the above one might conclude that infinite lists require an infinite
amount of storage space for their representation and that they are, therefore,
not representable in any computer, Notice, however, that, at any moment during
a computation, at most finitely many tist elements have been computed, Hence,
the computed part of a list is always finitely representable, Phrased differently,
compiete evaluation of an infinite list takes an infinite amount of time and
until that moment a tinite amount of storage space suffices. In this respect,
infinite lists do not differ from other expressions.

In our notation there iz no formal difference befween lists and tuples,
as introduced in chapter 2: tuples simply are finite lists. The difference
between tuples and lists lies in the way they are used; usually, all elements
of a list are assumed to have the same type, whereas the elements of o tuple
may have different types. Because, in our formalism, there iz no synioctic
notion of type, we do not need different notations for tuples and for lists.
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5.1 Primitives for list construction

In this section we introduce a number of constonts and funclions,
called the {/sf primitives, in terms of which lists will be defined, All properties
and theorems about lists formulated tn the following sections can be proved
by means of the properties of these primitives.

definition 5.1.0 (syntax of the list primitives): The list primitives are:

the constant [ ("the emply list”, or “empty”)
the function ise ("is empty")
the binary operator {"cons”)

the binary operator # ("take™)
the binary operalor {("drop”)

The binary operators are used in infix notation. ; binds weoker than 4
and ¥+ ; furthermaore, ; is right-binding, whereas * and + are left-
binding, According to our general convention, - and o bind stronger
than ; , 4, and ¥ . The binding power of these operators relative to
other operaiors is irrelevant: we shall always use parentheses when
necessary.

0

postulate 5.1.1 (semantics of the list primitives): The list primitives satisfy

the tollowing retations; they hold for all x, y, i, Q-x A Q-y A Naot-i :

ise-[] = true
iser{x;y) = falge
{x;y)-0 = %
(x;y)-lisl) = i
xt0 =[]
[14i =[]
Geyylr(itl) = xjyh
x¥0 E
[14i = [}
oy gld(iel) = ydi
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remark 8.1.2: Actually, the set ot list primitives is redundant: instead of 4
and ¥ , with the above properties, we could have introduced {41} only,
with properties [W1=[) and (x;yl¥1=y . In terms of these properties,
the opergtors * and ¥ can then be defined. For the saoke of simplicity
and symmetry, however, we have decided lo introduce t* and 4 right
away. In the traditional literature on functional programming, two functions
hd ("head”) and 1l ("tail”} are used, satisfying hd(x;yl=x and
tl{x;y) =y ; notice that hd and ti correspond to (.0) and (¥1) .

]

remark 5.1.3: As is the case with other constructs in our program notation,
the above postulate does not specify the values of the list primitives
completely. Yet, this postulate provides all information about the Lst
primitives we need, and nothing else.

]

The following properties follow immediately from the above detinition,

property 5.1.4: for all u, v, x, y:
(x;u) # (]
(x;yldl =y
(u;v)={x;y) = u=xAv=y
[m]

convention 5.1.5: By abuse of notation, we write x=[] instead of ise-x .
and x#[] instead of ajge-x ., Notice that, according to postulate 5.1.1,
if x=[lwv (Ey.z::x=yj;z) then the expression x=[] has a boolean
value. For all other values of % the value of the expression x =[] must
be considered og undefined, i.e. completely unapecified.

a

5.2 Listoids, finite lists, and infinite lists

In this section we give a formal definition of, both finite and infinite,
lists and a few elementary properties. Usually, all elements of a list have the
same type. Here, we use A to denote the element type of the lists defined.
Notice that A may be Q , in which case no restrictions are imposed on the
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type of the elements. Throughout this section variobles a, b denote values
of lype A, whereas variables x, y denote values from ().

definition §5.2,0 (tinite lists); The finile lists over A of lengfth 1, for natural
i . are the elements of the set L (R) : these sels are detfined recursively
bry:

i

LO(H)-X = x=[l]
L, (Alx = [Eby:A-baL(A)y: x=bsy)

Informally, the elements of Li(Fl) are of the farm LT PR P {1, for
values a, (Dgj«<i) | A-a; . These valuss are cailed the elements of the list.

The set L _(R) , of finite lisls over A, is the union of the sats Li(H) , e

L(AYx = (Ei:Oéi:Li(ﬂ)-x)

The finite lists have been defined by means of the auxiliary notion of
tinite lists of length i . In a similar way, we need an auxiliary nation, namely
the lisfoids of erder /. for the definition of infinite lists.

definition 5.2.1 {listoids and infinite lists): The listoids over R of order |,
for natural i , are the elements of the set F’i(ﬁ) ; these sets are defined
racursively by;

true
(Eb.y:AbaP(f)y: x=hjy)

H

PO(F'!)-x
O

Informally, the etements of PI.(Fi) are of the form Qq38y 5
for values a (0gj«i) , A-a , and for any x . Again, the values a are
called elements of the listoid. The set L_(A) . of infinile lists over A, is
the intersaction of the sets FP(A) | i.e:

TR

Lw(ﬂ)-x = (Ri:0gi: B(A)-x)
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definition 5.2.2 (lists): A lisf over A i5 either a finite or an infinite list over
A. The union of the sets L _(A) and LM(H) is called L(A), ie:

L(A)x = L (A)xv L _(A)x

For finite lists we introduce an abbreviation. This notation is the same
as the notation for tuples defined in chapter 2: tuples are finite lists.

definition 5.2.3 {notation for finite lists): For natural n and values ni(Osi<n) :
lag. .o )= 0gi.ia il
o

Whenever if is clear from the context what the element type of the lists
we are discussing is, or when A=( ., we omit the type indication; so, we
write L instead of L (R} , etcetera. In that case. we olso speak of (finite
or infinite) lists instead of (ists over A, In section 5.3 we show that the
proof that a value is a list can be separated completely from the proof that
its elements satisfy certain properties.

We conclude this section with a selection of simple properties of the
sets defined above. The proofs of these properties are neither very difficult
nor very interesting; we, therefore, omit them.

property 5.2.4: For naturat i, j :
Pi+1§Pi . hence:
Lx = (Ri:jgi: Box)
LEP
L cF
oD I
LnL=¢ v i=j
=¢ , hence: LNL _=¢, hence:
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property 6.2.5: For natural i, j :
(#i) has type P} - Li forijoig]
(*1) has type Lo L
(#i) has type L= L
{¥i} has type 1-"J s P

{j-i)maxg
{¥i} has type Lj + L

{j-ilmaxo
{(4i) has type L =L
m}
property 5.2.6: For natural i, element o (i.e: A-a), and valug x ;
L-la;x) = Lex
L-lajx) = L x
Pi*l-(a;x) = P.'x
L lasx) = L,,x
Lx 5 x=[lv(Eby:L-y:x=hjy)
L-x =z x=[1vI(Eby:Ly :x=bjy)
Lo = (Eby:L -y:x=bjy)
m}
corollary 5.2.7: (Ax:L-x: x=[]1 v x=x0;x1) .
m]

corollary $.2.8: For predicate R we have:
(Ax:L -x:Bx} = R0l n (Aby:L +y: Rslbiy))
(Ax:L -x:R-x) (Aby:L -y: R-(bjy))
(Ax:Lx : Rx) = Rl A (Aby:Ly: R(bjy))

[m}

ramark 5.2.9: Property 5.2.6 shows that both L and L are solutions of the
equation, with unknown P : (Ax:: Pax=x=[]v (Eby:Pwy: x=h;y)}.
Actually, it can be shown that L is the smallest and L is the greafest
solution of this equation. Similarly, L is the greatest solution of the
equation, with unknown P : (Ax:: P = (Eb,y:Py: x=b;y}).

5.3 The length of a list

WWe use the unary operator # ("length” or "size”) to denote the
tength of a list. It huas type L » {NatU {0 }) , where oo ("infinity") is used
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to denote the length of infinite lists; we postulate that (Ri:Nat-i: i<co) . Ue
use 00 ohly in discussions about lists. In programs, we apply # lo finite
lists only. Thus, value oo need not be computable.

postulate 5.3.0. Value co satisfies:
(Ai:Not-i:i<oo)

[}

definition 6.3.1: Operator # satisfies:
(Ris: Nat-inL-s: #s=i)
(Rs:L_-s: #s=00)

From these definitions, the definition of lists, and property 5.2.8, it
follows that & has the following properties,

property 5.3.2: For any value q, finite list s, and infinile list x :
#() =0
#(a;s) = 1+#s, hence: #z<suia;s)
wla;x) = ax
For any {finite or infinite) list x :
#x=0 x=[}
#x2>0 {(Eby:L-y: x=b;y)

By means of o we con identify the elements of a list without dis-
tinguishing finite and infinite lists: the elements of list x are xi, 0gi<ax .
For example, the following property expresses that lists over some tuype A
are listas aver 0 whose elements have type A . Hence, that x is a list
over R can be proved by showing, first, that x is a list (over ), and,
second, that all elements of x have type A . For the latter, we need not
know that x is a list: x may be treated as any other function on {an initial
segment of) Nat |

property §.2.3: For type A, and any x:

LAY = L{M-x A (Ri:0¢i<ax: A-(x0))
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property 5.3.4: For fype A, and any x:

LiA)sx = "xhastype {i|Ogi<ax}=A"

5.4 Theorems for finite lists

Because # is a function of type L - Nat . properties of tinite lisis
may be proved by mathematical induction on the value of # . This amounts
o the following praot rule,

rule 5.4.0 (proof rule for finite lists): For predicate R we have (0) & (1},
with:

() (Ax:L -x:Rx)
(1) (Ax: L x: (Ay: L -ynay<ex:Rey) = Rex)

Sometimes, properties of finite lista are proved by means of, so-called,
structural induction. This is, however, nothing but a special case of the above
rule,

theorem 5.4.1 (structural induction}: For predicate R we hove (2}« (3) .
with:

(2)  (Ax:L x:Rx)
{3) Rl n(Rax:L -x:Rx =»A(asx))

proof: By derivation of (2} from (3)

(Ax:L +x:Rwx)
& {rule54.0}
(Ax:L-x: (Ry: L -yasy<ax:Rey) > Rex)

{ corollary 5.2.8 for L_, with dummy renaming b,y «a,x }
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((Ay: L -gAsy<all:Rey) 2 R-{1) A
(Rax:Lx: (Ay: L -yasy<ala; x) Ryl & R-la;x] ),
= { #[1=0, hence the first conjunct equals R[], #(a;x) = #x+1 }
R-[1 A (Hu,x:L*o(: (Ay: L -ynzygax:fy) 2 B-(ajx) )
« { instantiation: yex }
Rl A (Aa,x: L -x: Rx 2 Refa;x))

Each finite list is completely determined by its elements. The following
theorem expresses this.

theorem 6.4.2: For finite lists x and y:
¥x=y = mx=nya (Ai:0gicax: xi=yi)

proof: "' : This is Leibniz,
'&': By induction on ax -
case ax =0
#X = &y
{ex=0}
#=0 A 8Y=0

IF

{ property 5.3.2 }

x=[) Ay=[]
F { caleulus }
x=y

case #x >0 : on account of property 6.3.2 we may use a:ix and bjy
instead of x and y:

ajx=b;y
= { property 5.1.4 }
a=b A x=y
& { property 5.3.2: mx < #(a;%): induction hypothesis }
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a=b A ax=aya (A 0gi<ax: xi=y-i)
= { definition 5.1.1 }

ax=ay A (a;x)-0={b; )0 AR 0gicmx: {a;x){i+1) = (b;y){i+1))
= { dummy substitution: i+1ei ; range unsplit }

#x=ay A (Ri:0gicaxst: {a;x)-i=(bsyli)
= { property 5.3.2; #x+1=ala;x) }

#la;)=alb;y) A (A:0gi<wlasx): (ayx)-i=(biydil

5.5 Productivity theory and itz application to infinite lists
5.5.0 introduction

Throughout this section we use {isf for infinife Iist, unless staled other-
wige. In contrast to the, relatively simpte, situation with finite tists, proving
propertias of infinite lists is more complicated. Because infinite lists cannot
be ordered according to length, proofs by induction on their lengths are not
possible. In our program notation, lists, ond functions yielding them, can only
be defined recursively. Therefore, in order tc be able to prove properties of the
vatues thus defined, we need some other induction principle. Of course, we
con use definition 5.2.1 to base our proofs upon: the formula (Ri:0gi: P-x)
suggests the use of mathematical induction over dummy i . It so happens,
however, that definitions of lists, and of functions yielding lisls, exhibit
patterns for which a number of properties can he proved once and for all.
For this purpose, we develop some theory,

The key notion in the theory developed here is productivify. Rs far
as we have been able to trace, the first use of the lerm productivity, in
connection with lists, occurs in [Dij110Dij2]. The first attempt towards a
formal definition and Hs use in a productivity theorem has been given in
[Hoa0]. This has given rise to more general notions of productivity, such as
the ones in [Boo] and [Sij].

The problem we are dealing with consists of two parts, First, we wish
to know how to prove that the value of a given expression is a list. Second,
given such an expression, the question iz how to prove properties of that list.
Notice that, becouse lists are functions on Nat , for the latter purpose all
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technigues for proving properties of functions are applicable. Conversely, the
applicability of the theory developed here is nol restricted to lists.

We formulate the definition of productivity and its associated theorems
in a rather general way, withoul reference to lists. Mext, by instanttation of
this theory, we obtain a few special cases pertaining fo lists and functions
thereof. In chapter 6, we show how this theory can be used for the derivation
of programs,

5.5.1 on squality of infinite lists
We consider the relation ® on Lco , defined by:
(o) xeoy = (AT:0g0: xei=yei)

This iz an equivalence relation and lists x and y satisfying xwey are,
to all intents and purpeses, functionally equivalent. Yet, in our formalism we
cannot prove xcoy #x=y . Nevertheless, we simply write x=y instead
of xey ., with the convention that, for infinite lists, x=y means xwy .

In some cases, it is more convenient to interpret xcy as follows:

{cot) xeooy = (Ai:0gi: xbi=yhi)

() and (cot) are equivalent. Therefors, we use both without explicitly
stating so0 ot each occasion,

5.8.2 definitions

We start the development of the theory with the introduction of some
notions. The theory is independent of the particular properties of our value
domain . The game played here takes place in an arbitrary set, the universe.
that remains anonymous. Sets — such as the U, introduced below -- are
subsets of this universe. The following properties form the starting point for
the discussion; they are all we need for the development of the theory. Later,
we apply the theory to sets U, and relations oo, that have much stronger
properties than the ones formulated here. For example, the relations 0,
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happen to be equivalence relations. For the purpose eof formulating the theory,
however, we need not know this.

{0a) U, is a set, for all i,04€i

{0b) 0, is a relation on l.li Lforall i, 0gi

(1a)  (Au:: Uo-u)

(b} (Auyv::ucoyv)

(2a) e iz a relation (on the universe)

(b} (Au,v::uev = (Ui-uzui-v) ), forall i, 0gi

(2¢)  {(Auv,w::uev = (umiwzvmluﬂ)/\(wmiuzwmiv)) Jforall i, 040 .

For the time being, the reader may read = for & . The only properties of @
needed turn out to be (Zb) and (2} ; hence, our theorems may be applied
in any situation satisfying (2b) and (2c) . It so happens that we need this
freedom in the applications of the theory.

definition 5.5.2.0 (definition of U and o_ )
oo %)

(Au:: U -y = (Hi::Ui-u) }
(Auv:U sual v:iue v = (A ucov) )
[*+] [4+] oo 1
Q

definition 5.6.2.1 (productivity): “"Function F is productive” = (3a) A (3b),
with:
{2a) {(Ri,u:: l.li-u. U, - (Fru))
(3b) {(Au,v: Um:u/\ Um-v: (Ai:: ue v > Feu m.H_iFVV) )
m]
definition 5.5.2.7 {admissibility): "Predicate P is admissible” =
"a sequence @, (05i} of predicates exists satisfying (4a) A (4b)" | with:

(4a)  (Au:l  u:Pu = (Ai:: Qim) }
{ab)  (Ruv:Uuall ov: (Ai::ueoy = (Cli-ué(]i-v) 1)
1

property 5.5.2.3: For admissible predicates PO and F1 predicate POAPL
ig admissible too.
m]
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convention 5.5,2.4 (productivity of definitians): Productive functions are used
in recursive definitions. For productive F |, we can define u by wef.u.
In practical situations, however, the definition of u iz often formulated,
without introduction of name F |, by means of an expression E containing
recursive occurrences of u; i.e, we simply write ueE . This definition
can be transformed into the former one by defining F by F.uef . If
function F, thus obtained, is productive we also call definition ueFE
productive,

5.9.3 theorems

We present two theorems. The tirst one states that all fixed points
of a productive funclion are elements of UQD , and that all such fixed points
are "equivalent” in the sense of o . The second theorem provides sufficient
conditions to be satisfied by a preductive function and on admissible predicate,
in order that all fixed points of the funclion satisfy the praedicate. Neither
theorem requires the function to have fixed pointa.

theorem 5.5.3.0 (first productivity theorem): Productive functions F satisiy
(5a) A (Bb) , with;

(5a) (Au:ueF-u: Uu)
(5b)  (Au,v:ueFwuaveF.v; ue v)

proof: For u, satisfying ueF.u, we derive:

U ez
o0
= { definition of u, }
{Ai:: Ui-u)
= { mathematical induction }

Uyun (A Uous Uiﬂ-u)
{ (1a) , ueF.u and (2b) }
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(Ri::Upqu= Ui+1-(F-U) )

{ F is productive: (3a) }

true
This proves (Sa) , For uv , satistying ueF-u A veF-v, we now derive:

uoa v
o

{ definition of co_ }
[=,2]

(Ai:: umiv)
e { mathematical induction }
UL A (Ai:: uey umiﬂv)

{ {1b) . ueF.u A veF-v and {2¢) }
(Ri:: eV = F-umi_lF-v)
= { F is productive; (3b) }

true

Application of (3b) in the last step of this proof requires U sua U ov
we have: U_su & { (5a) } ueFwu . This concludes the proof of (Bb) .

ol

thearem 5.5.3.1 {second productivity theorem): Productive funclions F o oand
admissible predicates P satisty (8¢) & (6a) A (8b) , with:

(6a)  (Eu:l_-u: Paul
(6b} (Ay: Um-u C Py = P(Feu) )
(6c)  (Au:usF-u: Pwu)

proof: Assuming (6a) A (Bb) we prove (Bc) . For u, sotisfying ueF-u , we
construct a sequence Vng iy —— of approximations of u ——, as follows:

(6d) v, such that U _-v, A Py, : on account of (Bal this is possible.

(6e) v, = Fav, L0l

Notice that, on account of ueF-u, F's productivily, and (5a) , we have
U_-u . Furthermore, we have (Bf) A {Bg) A (6h} , with:
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(6f) GIRSRVIER'S!
(6g) (Ai:: P-Vi)
{6h)  (Ai::ucwmy,)

Both (6f) and (Bg} are easily proved by mathematical induction. For
{8f] , this requires, apart from the definitions of v and U_, (8a} ; for
(6g} , this requires (B6b) . Moreover, {6h) ic proved as follows:

(Ai:: Uy, )
= { mathematical induction }
LeoV, A (Ri:: MOV, B U LV )
= { (1b) , uef.u and (2¢) , definition of v,

(Ri:: ucav, Feu mi‘_iF'wri }

}

1

{ F is productive: (3b) , using U_suAl_-v, }
true
1 (proof of (6h) )

We now have what we need to prove Peu -

P

= { Ugu . P is admissible: {4a) }
(Ri:: Q-u)

= {U_u, (81), (8h) so: (4b) }
(Ri:: Qo)

< { instantiation }

(Ri:: (Aj:: Clj-vi) )

= { (8f} , P iz admissible: (4a) }
(Ri:: P-Vi )

= { (6g) }

true

This concludes the proof of this theorem.
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5.5.4 list productivity

A simple application of the above thewry is the following one. With P
far U uti=vh for uonv., and = for @, we hove U =L~ and o,
amounts to = (in the sense of section 5.5.1). Then, conditions (0a} through
(2c) are satisfied, Definition 5.5.2.1 amounts to the definition of, so-catled,
list-productivity .

definition 5.5.4.0: "Function F is list-productive” = (7a) A (7h) . wilk:

(7al  (Aiu:i: Pus P A(Fu))
(7B)  (Auv:L -ual -v: (Ai::ubi=vhi = Feut(i+1) = Fovd(is1) ) )
g

Similarly, definition 5.5.2.2 can be instantiated. Specifications of {infinite)
lists often are predicates P satisfying:

=) (Ru:L .u: Pu = (Hi::Qi-(u“‘i)) )

tor some sequence @, (0¢i) of predicates, where Q, is a predicate on L.

In words: infinite lists can often be specified in terms of their finite prefixes.
According to the following lemma, such specifications are admissible.

lomma 6.5.4.1 (first admissibility lemma): (8) = “P is admissible” .
proof: By straightforward application of definitien 55.2.2, with @ =(*i)
for Q. , and the above definitions of U_ and o .
1 oo [e.]
O

example 5.5.4.2: For any value o, function {a;} is list-productive; hence,
by {5a) , xllx=a;x] is an infinite list, Moreover, this x satisfies Pex
with:

Fu = (Ai:: uwi=ad
In this simple case, P-x can be proved by straightforward mathematical

induction. Generally, whenever the elements of the list have been specified
explicilly in such a way that simple recurronce relations for these elements
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can be derived, such a "direct” praof by mathematical induction is simpler
than a preof by an appeal to the second productivity theorem. The theorem
is particularty useful in those cases where no such simple relations can
be derived, for instance because the list's elements have been specified
more implicitly, We present examples of this in chopler &,

]

oxample 5.5.4.3: Predicate P is admissible, whereas -P is not, with:

P-u

-P-u

(Ri:0gi: ui=1) | =0
(Ei:0gi:ui#1)

With F defined by Fex=1;x, both P and -P satisfy conditions (&a)
and (6b) of theorem 6.6.3.1; yet, -P does not satisfy (6c) . This shows
that the requirement of admissibility is not veid.

]

5.6.% uniform productivity

We consider the following definition of f, in terms of G and H :

{9a) fx

= Gex j f-(H-x)

For the sake of the discussion we rewrite (9a) into the equivalent:

{9b) f.x

= Ffx  , where F ig defined by

{9c)  Fe.gx = Gx; g-(H-x)

Let X be a set. Throughout this subsection x ranges over X . We define:

u.

I
UV
gy
u

Qa
uer v

=)

Conditions

(X P)
= (Ax:; uxti=vxti)
= {Ax::u-x=v.x) , hance:
= (X%Lm)

(Ax:: ux=vx)

{0a} through (2e) are met. Notice that, by the definition of &
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and (49b) , we now have fef.f .

thaorem 5.5.5.0 (unifarm preductivity theorem): With f defined by (9a) . we
have (10h) « {10a) , with:

{100) H hos type X=X
{10b) f hos type XL

proof: By application of the first productivity theorem to function F . From
this theoram we conclude U -f . i.e: (X—;Lm)-f , provided that we prove
that F 15 productive. Here, we prove (3al only; the proot of {3b) has
the same structure.

U, -(F-ul

= { definition of U, }
(X=>P ) {F-u)

- { definition of » }
(Rx:Xox: P+ (Frux})

= { {9¢c) }
(Ax: X-x: Piﬂ-(G-x;u-(H-x)) )

= { P, (a;%) = P-x (property 5.2.6) }
(A : Xo: Pefu-(Hx1) )

& { predicate calculus, using (10a) }
(Ax:X-x: P-{ux) )}

= { definition of » }
(X—)Pl)-u

= { definition of U, }
U.-u

a

lemma 5.5.5.1 (second admissibility lemma): For every sequence &, {0¢i) of
predicates and for predicate P satisfying (11) . P is admissible, with;

(11)  (Ag:(X=L_ )-g:Pg = (Aix:: Q-x-{g-xti)) )
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proof: Eszentially the =ame as the proof of lemma 5.5.4.1.
]

Bocause the productivity of function F is independent of the properties
of set X, we call F , and, hence, f's definition, uniformly productive. Notice
that theorem 5.5.5.0 provides a, more or less, synclactic criterium for
productivity: because, in our formalism, every function H has type Q-0 ,
any definition of the form f-x = G-x ; f-(H-x) yields a function t having
ype Q=L .

The theorem can be extended a little as follows. Under the additicnal
requirement that & has type XY  for some set Y, it is possibile to prove
that f has type XL (Y] . This can be shown by a simple extension of
the obove proof of the theorem, or by proving [(Ax,i:Xxa0gi: Y-(f-x-i)}
directly by mathematical induction on i .

example 5.5.6.2: We consider function from defined by:
from«i = i ; from:(i+1}

This definition is of the form of (9a) ; therefore, it is uniformly productive,
Observing that i+1={+1)+i and that function {+1) has type Nat—>Nat | we
conclude, by opplication of theorem 5.5.5.0, that from has type Nat=L_ .
Furthermore, it satisfies (Ri,j:04iA0g): tromsisj=i+j) , which is easily
proved by mathematical induction {on | ),

5.5.6 non-uniform productivity

In this subsection, we consider the following definition of f | in ferms
of B, G,and H:

{12a) fx = { Bex 3 G-x; f-(H-x)
[ -Bx = fe(H-x)
)

Let X be a set. As before, dummy x ranges over X . e assume that B
and H satisfy:



(12b) B has type X -Bool
(12¢)  H has type X=X

We invastigate under what conditions f has type X—)Lm , First, we observe
that, for x satisfying (Ai:: aB-(H'-x}) , the only conclusion about { we
can draw from {12a) i5 fex=f-(H'-x%) , for all i, which is not very useful.
S0, a necessary condition for the “usefulness” of definition (12a) is:

(13)  (Ax:: (Ei::B-(H'x)))

We now show that {13) also is sufficient, by deriving an allernative
definition for t that i= uniformly productive, =o that we can apply the uniform
productivity theorem. Thus, we conclude that from (12a) through (13) it
follows that f has type X=L . For the remainder of this subsection, we
ossume that X satisfies (13) . We define tunction v, of type X-Nat, as
follows:

(14)  wvex = (MINi:B-(H-x):i)

That this is a correct definition follows from (13) and the fact that every
non-empty subset of Nat has a smallest selement. v has the following
properties:

{19a) (Ax:: B-x =2 v-x=0)
{i5b) (Ax:: aBwx = vex=wv:{Hx)+1) , hence
(1%c) (Ax:: wvex>0 =2 velH-x) <vex)

For the sake of the discussion, we introduce functions FO and F1i :

{16a) FOugx = { Bix > Gex ; g(Hex)
[ -B-x » g-{H-x)
)
(16b) Fiegx = G-(H%x) 5 g- (") D ke=vex ]I

Definition (12a) con now be rewritten as f-x=F0-f-x . Function F1 is of
interest because it is uniformly productive, We now show, in a number of
steps, that (Ax::fax=F1.4x), so that we may apply the uniform productivily
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theorem (5.5.5.0) to f.

lemma 5.5.6.0: (Ag,x:: Flgx = FOgux [ k=vx+1 1)

proof;

By mathematical induction on the values ot v :

case v-x=0;

Fokugox f k=vex+1 I

{ v=x =0 (unfolding k and where-clause elimination} }
FO-g-x

{ vix=0 = {(15a)}Bex : (16a) (unfolding) }
Gex 5 g-(Hsx)

{ v=x=0 (where-clause intraduction and folding k) }
G- (H%x) 5 g (M o) [ e = wex 1

{ (16b} (folding) }
Fl-g-x

casa v-x » 0

Fok-gex I k=vex+1 B

{ dummy substitution: k«k+1 }
Fo* g [ k=vex ||

{ FOX* g =Fo.(FOXg) , vex >0 3 ({16a)(15b)} vex = ve(Hex)+1 }
FO-(FOMug)ox [T k = v-(Hex)+1 ]I

{ vox >0 = {{15a)} -B-x : {160} (unfolding) with g« FO*.g }
Fok.g-(Hex) I[ k=v-{H-x}+1 ]

{ v-x>0 2 {(15¢}} ve[H-x) < v-x ; induction hypothesis with x «Hex }
F1i-g-(H-x)

{ (16b) (unfclding) }
G-(H* (Hex)) 3 g (M (Hax)) I k== ve (Hex) )

{vex >0 2 vex=v-(H-x}+1 , 80 ke=ve(Hx) = ktl=v-x }
6-(H* (o)) 5 g (H A (Ha)) Il kel =vex )

{ B (H.x) s H**L.x | etcetera }
G (H* ) 3 g (HR*2ux) Il ket =vex )

{ dummy substitution: k+1 ¢k }
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G- (H%x) 3 g (HR*2ex) f k=vex ]
{ (16h)} (foiding) }
Fl-gwx

m]

lerma 5.5.6.1: (Ak,x:: tx=F0"fx)

proof: By mathematical induction on k , using fx=F0-t-x (obviously), and
(16a) (unfortunately).

]

theoram 5.5.6.2: (Rx:: fax=F1.f-x)

praot:
Fiefex
= { temma 5.5.6.0 }
FoMofox I ko= vexel U
= { lemma 5.5.6.1 }
fex
]

corollary 5.8.6.3: { has type XL .

proof: Because f satisfies (Ax::fx=F1-fx), and because, as a conse-
quence of (12c) , H [Hwx=H*txllk=v-x 1]l has type XX, theorem
5.5.5.0 is applicable.

Similarly, we may use the second productivity theorsm (5.5.3.1) to
prove properties of f, Condition (8b} of this theorem then amounts to;
(17a) (Rg:(X~L_)-g: P-g=P-(Fl.g))

This formula contains Fi . It would be nice if we could reformulate (17¢) in
terms of FO, i.e. in terms of f's original definition, as follows:

(170) (Ag:(X=L )g:Pg P {F0-g))
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If P satisties (17¢), for some predicate R of type XL -Bool, this
is indeed possible, as the fotlowing lemma shows.

{17¢) (Ag: (XL J-g:Pg = (Ax:: Rexlgx) ) )

lomma 5.5.6.4: For P satisfying (17¢) , we have (17a)&(17b) .
proof:
P-(F1-g}
{ (17 }
{Ax:: Rex(Flegex))
= { lemma 5.5.6.0, with kx for v.x+i }
(Ax:: Rox-(FOM*.gex) )
< { instantiation }
(Ax:: (Ry:: Ry (Fo%gey) ) )
= { {17c) with g=F0"*%g }
(Ax;:: P (FO%g) )
& { instantiation }
(Ax:: (A P-(Fol.g) ) )
& { elimination of tha, now superfluous, dummy x }
(Ai:: P-{FO'-g))

e have derived (Ri:: P-(FOi-g)) = P.(F1i.g} , which implies:
{Ag:: Prg=(Ai::P(F0'.g))} > (Ag:: P.g=P-(F1-g)) . The antecedent of
this implication follows frem {17b} by mathematical induction,

m}

Notice that predicates P satistying condition (11} of the second admissibility
lemma (5.5.5.1) are of the form (17¢) . Hence, such predicales are also
admissible for the application of theorem 5.5.3.1 to, so-called, non-uniformly
productive definitions such as (124} .
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5.5.7 degrees of productivity

In this subzection we digcuss list-productivity, of, subseclion 5.5.4, in
greater detail. In order to be able fo apply the productivity theorems we must
prove that the function involved iz productive. This can be done, of course, by
means of the definition of productivity —- in our case: definition 5.5.4.0 ——
but this is rather awkward. Therefore, we develop a few rules by means of
which the productivity of a funclion can be established more easily. The key to
this is the observation that many functions can be censidered as (function)
compositions of standord functions, The productivity of these standard functions
can be estoblished once and for all, so all we need iz a rule expressing the
productivity of a composite function in terms of the productivities of its parts.

For this purpose, we generalise the {boolean) notion of list-productivity
to one involving a function, of type Int=Int | that represents the degree of
productivily of the function it belongs to. This generalisation follows from the
observation that i+l , i U, and o, in the definition of productivity,
equals  (+1)+ : the function (+1) is just an instance of a whole class of
functions, For our purpose, the ascending funclions of type Int>Int suffice.
In practical cases, these functions are usually of the kind (+k) , for integer
k . Throughout this section we interpret (-k) as the function W f-x=x-k]1 ,
not ag the number -k .

definition §.5.7.0 (generalised list-productivity}: For ascending function f, of
type Int=Int : "F is f-productive” = (18a) A (18b) | with:

{18a) (Aix: 0ginOghi: Pax s P (Fux) ]
(180} (Axy:L -xaL -y: (A 0gin0ghic xbi=yti 5 Fextfi=Foytti )}
m

The relation between generalised list-productivity and list-productivity
is given by the following property.

property 5.5.7.1: (21) « {20) A (19} , with:
(18)  {Ai;.: fixi)
{(20) “F is f-productive”
{21)  "F is list-productive”



S Theory of lists 116

property 6.6.7.2: For any a and natural j :
I[I-x=x1 is (+0)-productive
{a;) is (+1)-productive
(4i) is {-j)-productive
FIFx = G-0er(j+1)} 3 F-{xd1} Il is (=j}-productive

proof: We only show that FI[F-x = G-(x#(j+1)) ; F- (41} ] is (-j}-productive.
For the proof of (18a) ond (18h) the sitructure of the expression
G-(x4(j+1)) is lorgely irrelovant: we abbreviate it to Gx . With (-j}

for 1, we have f-i=i-j and the formula 0giA0gf-i equivales jgi
(because 0g| ). Both (18a) and (18b} can be proved by mathematical
induction on i, with j=i as the base case:

Py (Fx)
= { definition of A }

true
& { predicate calcutus }

Px

j
and, for i:jgi:

IJitl_j-(F-x)

{ unfolding F }
Piﬂ_j-(Gx;F-(xh))

{1givt-j; definition of £ .}
P_:(Fxb1))

& { induction hypothesis }
Pa(xd1}

= { x=%03x¥1 ; definition of Pt
B

This proves (18a) ; similarly, we prove (18b) :
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Faxt0 = F-yto

= {definition of 20 }
{rue

% { predicate calculus }

M=yt

and, for i:jgi:
Foch(i+1-j) = Feytlirl=j)

{ unfolding both applications of F , with Gy for G.(yr(j+1)} }
(G ; Fe (b1 (i+1-) = (Gy; F-(ydL} )4 (ivl-j)

{ 1 ¢i+1-] : definition of #{i+1-j) ; property of ; (5.1.4) }
Gx =Gy A F-(xd1)4(i-]) = Felyd1)(i=))

{ induction hypothesis }
Gx =6y A {xb1)hi=(yd1)4i

{ definitions of Gx and By , t¥-calculus {see below) }
G0t (1)) = G-(yt(j+1)) A xP(i+1)41 =ygt(is1]dt
& { Leibniz (twice) }

wh(j41) =yt (j+1) A xt{i+1) =yt(i+1)
= {jsi: (19b)(see below) }

xt(i+1) =yt{i+1)

k1

The hint "Me—-calculus™ refers to the property sbjti =xt(i+j)dj |, tor list x
and natural i and j. This and other such properties are summarised
in section 5.8.3.

]

thaoram 5.5.7.3 (composition rule for productivity):

"F is t-productive” A "6 is g-productive”
3 "FoG ig (fog)-productive”

proof: For f-productive F and g-productive G, we prove that the pair
FoG,teq satisftez (18a) ond {18b) . Both are praved by case analysis.
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caga 0giA0ggina0gfigi):

Pf-(g-i)'(F'(G'xn

* {0ggiana0ghlgi) : Fis t-productive }
Pg_i+(l3+x)

& {0<iA0ggi: 6 is g-productive }
P

case 0¢iAgi<0aDgt(gi):
Pf_(g_i)-(F-(G-x))
& { g-i <0 ond f is ascending, so: 0 ¢f-(g-i) £ 10 : [192){see below) }
Py o (F-{6x])
< {040 A 0«0 :F is f-productive }
E-{G-x)
= { (1) }
true
& { predicate calculus }
P.x

This proves (18a) . The proof of (18b) has exactly the same structure.
In it, {19b) {see below) is used.

The two properties used in the proot of this theorem are:

{19a) (Hx::}:;-x#-Pi-x) , fariyj:0gjgi
(18b} {(Ax,y::xtj=ytj « xti=yti) , forij: 05jgi

Property (19a)} follows directly from preperty 5.2.4, whereas (19b) follows
from the following -~ mee gection 5.8.3 ~—— property of 4 : xtidj=xtj, for
list x end natural ij: 0gj<i.

remark §,5.7.4; Function composgition of aseending functions is ascending.
]
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Moreover, productivily is monofonic, in the following way.

theorem 5.5.7.5 (monotonicity of productivity): For f and g satisfying

{(Ri:0gi:fizg-), we have:

"F ig f-productive” = "F is g-productive”

proof: By application of definition 5.5.7.0 and {19a) and (18h) .

u}

example 6.5.7.6: We consider the following definitions:

0

Fox = (x:04xs1) 5 Falxdl)
Gex = 0 ;1 ; Fex
s= 03;1;Fs

Function F is, on account of property 5.5.7.2, (-1)-preductive; notice
that, because x?2=[x0,%-1], x-0+x:1 may be considered as a function
of %42 . Function G can be considered as {0;)e{1;}oF ; because
1+1-1=1, G is, by the composition rule, (+1)-productive, As a result,
we may apply the first productivity theorem and conclude L -5 . This
being so, it is now possible to prove by mathematical induction over Nat
that {Ai;; s-i=tb-i) , where fib has been defined in example 2.7.2.

exampla 5.5.7.7: We consider functions dup and half | defined hy:

dup-x = %0 ; %0 ; dup(x¥1)
half-x = x-0 1 half-{x¥2)

dup is f-productive, whereas half iz g-productive, with:

f-i = 2%
il = (i+1)div2
Because (feg):izi and (gofli=i, both dupehalf and halfedup are

{+0)=productive.
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5.6 Mere operators on lists

In this section, we extend the program notation with two commonly used
operators, viz. # ("ecot”}) end rev ("reverse"). + is a binary operator; it
ig written in infix notation. rev is a (standard) function: in its applications
we use normal function application. Both are redundant in the sense that
they can be programmed in terms of the list primitives.

definition 6.8.0 (catenation): The binary operator # has the tollowing types:

Li x L = L'.ﬂ_ , for natural i,
Lm xL = Lm
L xL o L , henca
o o0
L xL =1L

For tists x and y and finite list s, its value is dafined by:

(Ri:0gi<ax: (xuyhi=x-i)
{(Ri:0gi¢< ay: {gwyl-(es+i) = yi)

Notice that, from the above type indications, for finite lists s and t it
follows that w(s#t) =as+at  Moreover, #lx#yl=w = sx=wvay=ow .
Syntactically, + has the same binding power as ; |

]

property 5.6.1: + is associative.
proof: By application of the above definition, with the use of theorem S.4.2
and, for infinite lists, the notion of equality introduced in subsection 5.5.1.

O

property 5.6.2: [1 is the identity element of

a

definition 5.8.3 (reverse): Function rev has type LoL  for i,0gi.Fer

finite list s, its value is defined by:

(Ai:0gi<as: revesi=s-(as-1-1))
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5.7 The fime complexity of the list operators

In this section we present the time complexities of the list operations.
We give no other justification than that our choice is realistic to the extent that
the program notation can be implemented in such a way that the requirements
formulated here are met. It must be understood that the time complexities
presented here pertain to the manipulation of the structure of lists only: the
time needed for the evaluation of the elements of lists must be wccounted
for separately. The discussion of what time complexity means in the cose of
infinite lista is postponed until section 5.10.

postulate 5.7.0 (time complexity of the tist operators): The following summary
is a list of pairs E:T of expressions; each such pair must be read os:
"svaluation of expression E tokes O(T) time". In this summary, x
denotes a list, s denotes a finite list, and i denotes a natural:

[l L
a;x 1
ww= (] 1
X+ ; i
i cot
wt 1
7S N #5
SH X : S
ravss ! #s

5.8 Rigebraic properties of the list operators

The list operators have many algebraic properties that are usetul for
programming. In this section we summarise the ones that seem to be the more
frequently used ones. Because, in applications, we need not distinguish batween
definitions and "derived” properties, we olso repeat the definitions given
eartier. Thus., we obtain a rother complete overview that can be used for
reference purposes.

Throughout this section, o and b denate values - of the element
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type, if so desired -- |
and t dencte finite lists, and i, |, k denote naturals. AU formulae must be
understood to be universally quantified over their free variables, All formulae,
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X, 4,z denote, either finite or infinite, lists, =

but one, are equalities that may, of course, be used in either "direction™,

5.8.0 cons properties

a;x
{a;x)-0
{a;x)e(i+1)
u;[]
asx=h;y

5.8.1 cat properties

(x #y)ii

(= +#y)-(es+i)
[} #x

x+[]

{a;x) #y
lal+x

X+ {y+z)
x#y=[]}
XHy=x

5.8.2 rav properties

revegsi
rev-[]
rav-{a]
revs(a;s)
rev-(s + [al}
revs(s # t)
rev-(rav-s}

# []

= q

= X

= [al

= a=bAax=y
= x-i , i<ax
= y-i i<y
= x

= X

= a;(x#y)

= QX

= {x#y) sz
= x=[] ay=I[]
= Lm-xvg=[]
= s-(#s-1-1) i<ns
=[]

= [a]

= rev-s + [a]
= Q;rev-s

revst # rev-s
s
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5.6.3 toke and drop properiies

{x4i}e)
(bi) e

x PO

x¥0

[14i

(14

(a; x34(isr1)
(a;x)d{i+1)

(e )i
O # )i
(x +# yl¥i
(x + y)¥i

X

xh(i+])

wk(i+])
xt(ie] i
x4 i
ravs(xt(i+}) )4
rav-{(xt{i+]} }¥j

5.8.4 # properties

#l]
#lal
#{a;s)
gz #t)
#(rav-s)
alxti)
u(sdi)

% , ek
il |, k+j<ax
[l

X

[1

(]

a; xti

x¥i

xHi .
% ytlimen) |
x¥i oy ,
Y {i—sx)

g ax
By L)
(-3

ux <

xtow xdi
xAi o xdit
xbid]

® i

Xbit
reve(xvitj)
rev- (ki)

1+ &%

, i+ g ax

1]

1

14+ uas

g + #l

1

#% min i

(2= -i) max 0

} where k=iminax
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5.9 Definition and parameter patterns for lists

In section 2.7 we have introduced definition and parameler palierns

for naturals and for tuples. Similarly, we now introduce such patterns for
lists. Becouse tuples are finife lists, we must see to it that the definitions
given here are consistent with the correapending definition for tuples. As in
gection 2.7, we give informal definitions only, by means of examples.

definition 5.8.0 (definition patterns for lists): Ue give a definition for lists

=]

of length 3 ond for listoids of order 3 omly, For expression E . names
a,b,c.s:

fa.b,c]=F means a=E-0 & b=f1 & c=E:2
aj;bic;s=E means u=E-0 & bh=E-1 & ¢c=EFE-2 & 5=E¢13

Notice that the definition [a,b,c]=E implies the equality [ab,cl=E only
it Lt . Similarty, the definition asb;c;s=E implies the corresponding
equality only if P-E . The definition patterns introduced here are intended
to be used for these cases only.

definition 5.9.1 (parameter patterns for lists): We give a definition for lists

ot length 0 ond 3, and for listoids of order 3 only. For expression E |
names a,b,c, s, and fresh name x ;

f-[1=F imeang fsx = (#x=0 =+ E)
flab.cl=E means fox = (#x=3 = Elllab.cl=x1}
f-lajh;e;s}=FE means fx= (ax23 =+ Elfla;b;e;s=x1)

H

In these definitions we have used the # operator, which ia defined for
finite liats only, e wish, however, to use porameter patterns in definitions
of functions on L too, bul #x is not defined for listoids that are not
finite lists. Yet, it is possibte to construct boolean expressions for #x=|

and #x i+l , for natural i and x saligtying L-xv Pm-x , in such a
way that F_ -x 2 -lex=i) and P .x 3 axzi+l . First, we abserve
that #x=i = #x2i A ={#x3i+1) . Second, for #x 20 we may use true ,

and for #x 3 i+l we may use x¥i#[] . Notice that these expressions have
different time complexities: evaluation of ex2i+1 takes O(ax) time,
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whereas evaluation of x$i#[] takes O(a#xmini} tima.
]

example 5.9.2: Without the use of parameter patlerns, a function sum .
mapping finite lists over Int te the sums of their elements, can be defined

as follows:
sum:s = [s=[] =2 0
Is#[] » =0+ sum-(s¥1}
)

Using parameter patterns, we can rewrite this definition into:

0

a + sum+s

surn-{]
& sum-{a;s)

o
oxample 5.9.3: A function sqr that squares the elements of a, finite or
infinite, liat over Int can be defined as follows:

{1

laxa) ; sqr-s

sqr-[1
& sgr-la;s)

The use of parameter potterns in the definition ot a function influences
the productivity of that function. Thig is caused by the presence of the guards
implied by the parameter pattern. We illustrate this by means of an example.

example 5.9.4: We consider functions F and G defined by:

Fax ® .

G-{a;b;s) = a;b;s
These definitions are not equivalent: F is (+0)-productive, wheras G is
{~1)-productive but not {+0)-productive. We show this by anaiysing &'s

definition. According to definition 5.9.1, this definition is equivalent to:

Gex = (wb1#[1 = azb;sllazbis=x1)



5 Theory of liats 126

On account of the proof rule for guarded aselections, this definition is only
meaningful for x satisfying x¥1#[] ; i.e, only for such x we con prove
properties of G-x . We now derive:

xb1#[]
& {(Ay:Poy:y#lD)}

PI-(KH)
& { (Ry: Pey: P -(yel)) }

B
Both implications in this derivation are unavoidable: for instance, £,
is the largest subset of () whose elements are, with our proof rules,
provably different from [] . Hence, the best we can prove is:

(Hx:Pz-x:xH#[])

Consequently, we cannot prove that G has tupe P > P s0, we cannot
conclude that 6 is {+0)-productive. The best we can try to prove is
that it has type Pz_’P:. . which indeed is possible.

The effect of this phenomenon increases with the tength of the parameter
pattern. In practice, this is hardly annoying, but it means that the use of
parameter patterns requires some care, especially when used in definitions
of functions that are intended to be productive,

5.10 On the time complexity of infinite-list programs

Expreasions whoge values are infinite lists cannot be evaluated in a
finite amount of time. Yet, they are useful because they can, by means of
the * operater, be mapped onto finite ligts, This enables us to separate
specification and derivation of an infinite~list expression from the way it witt
be used, thus enhancing modularisation. We discuss an example of this in
chapter 9.

UWe define the time complexity of infinite-list expressions as the time
complexity of their finite prefixes, as follows.
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definition 5.10.0 (time complaxity of infinile lista): For infinite-list expression
E , its time complexity is the time complexity of E4i . as ¢ function of .
For example, we call E's time complexity linear or quadratic, it evaluation
of Eti requires 0(i) or 0(i%) time respectively.

(m]

postulate 5.10.1: Let [ be list-productive and let Tf be F's time com-
plexity, such that evalugtion of Fex#i takes Thi time, for x . L -x,
and i, 0¢i . Then, evaluation of Xti also takes Ti-i time, with:

X = FX
a

In praclice, this postulate means that when we determine the time complexity of
a recursively defined infinite list, we need not take into account the recursive
occurrences of that list.

example 5.10.2: From example 5.5.7.6 we recall the definition of the infinite
list of Fibonacei numbers:

Fox = [x-0+x.1) 5 Fo{x41)
& s 0;1; Fs

H

With Tfi for the time needed to evaluale F.xti, we obtain from this
definition the fotlowing recurrence relations for Tf ; here, we have counted
unfoldings of F only:

Tf-0 0,
T {i+1) = 1+ Tfi

Sa, we have Tfi=0(i} ; by gpplication of postulate 5.10.1, we conclude
that s has linear time complexity too.
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5.11 Discussion

We discuss a few ospects of the theory developed in this chapter in
relation to some other recent work on this subject.

Our definition of lists enables us to interpret lists, depending on our
needs, in several different ways. This freedom is particularly useful for the
construction of specifications and for proving properties of the objecls thus
specified. The usual recursive definition of lists is well-suited for use in
programs, because this definttion admifs a simple operationatl interpretation. In
specifications, however, the use of recursion often leads to overspecification,
i.e. the specification conlaing more information than desirable. In chapter
11, we discuss the proper role of specifications more extensively. Here, we
illustrate, by means of a few examples, the use of the other two interpretations
of lists. All examples discussed here pertain to finite lists,

Lists are funcfions. Thus, a function mapping a list over Int fo the
sum of ita elements can be specified by:

sumsx = (Si:0gicmx: x)
Similarly, function rev can be specified by:
alrevex) =ax A (Ri:0gicox revexs = x-(#x=1-1) )

With thia specification, it is a trivial exercise to prove that, for finite list x|
rev-{rev-xl =x ; when the recursive definition of rev is used this proof
requires the invention of an auxiliary property [Birgl. Many specifications
con be formulated easily in terms of the functional inferpretation of lists. A
disadvantage is that the manipulation of these specifications may give rise to
a targe amount of — laboricus and error prane —  subscript juggling.

Lists can be defined algebroicolly, in terms of the associative operator
+ and its identity element []1 . For exomple, rev can be specified algebra-
ically as follows:;

[ I
rev-[al [al
rev-(x #y) = rev-y#rev-x

rev-[]

1]



As o second example, @, so-called, segment of list x can be defined to be
a list t such that x=s+#twu, for some lists s, u. Thus, the minimal
sum over all segments of list x can be specified by:

(MINs,tu:x=gutuy: sumt)

where sum is the function specified above. The advantage of the algebraic
approach is that subscript juggling con be targely avoided; its disadvaniage
is that it is sometimes less obvious —- see the example of rev —- that the
specification caplures our intentions. The, so-called, Bird/Meertens style of
function programming {Birt] is an example of a consistent elaboration of the
algebraic approach, The above example shows that functional and algebraic
formulations can be used in one and the same specification. We believe that
this e more efficient than strict adherence to either of the two styles.

There is a remarkable correspondence between our theory of infinite
listz and the elementary theory of processes developed in tHoall. In [Hoal],
processes are defined by means of infinite sequences that are similar to
infinite lists. The notions of consfruetivity and nondestructivily, as defined in
[Hoal], correspond to (+1)-productivity and (+0}-productivity respectively.
The two composition rules for nondesiructive functions and for conslructive
functions are instances of theorem 5.5.7,3.

The productivity theorems developed in this chapter cllow several
generalisations. A simple one is that the condition “F is productive™ may be
weokened to (Ei:1¢i: "F' is productive”) . This generalisation enables us,
for instance, to discuss funclion F defined by:

Fex = 05 %25 %

F iz not productive, bt F2 s productive and, indeed, x=F.x implies Lo
and (Ai::xi=0) . In [Sij], more general notions of productivity, such as
set productivify, and more general productivity theorems are formulated, For
applications to program development, we think that the simpler versions are
sutficient and more easy to use.
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& Programming with lists

6.0 Introduction

In this chopter we show, by means of a number of small examples, how
the theory developed in chapter 5 can be applied. We do so in ¢ formal way,
but this is rather laborious. In later chapters, therefore, we use this theory
more implicitly. The purpose of this chapler is to bridge the gop between
theory and practice. Furthermore, in the last two sections of this chapter, we
discuss the influence of the use of lists on the time complexity of programs.

6.1 Progroms for rev

In this section, we illustrate the devetopment of programs involving
finite lists by the derivation of programs for the (standard) function rev .
fis slarting point we use the toliowing specification, which, for the sake of
manipulability, has been split into 3 parts, Dummy & ranges aver L _

(0a) L -(rev-s)
{ob}  a&l{rev-s}=#s
{0ec}  {Pi:0gicas: rov-s-i =s-(#a-1-i))

e derive a program by induction on #s . On account of property 5.3.2,
the case #s=0 corresponds to s=[1, and the case #s>0 corresponds
to s=bj;t, for some b ond list t with #t<as . Therefore, we usually
distinguish cases {] and b;t right away: often, induction on #s boils
down 1o structural induction only.

For the case s=1{], part {0c) of the specification iz satisfied
independently of what we choose for rev-[1. From (0a) and {0b) we
infer that rev-[] must be a list of length 0 ; because the only list of length
0 is [], we have no choice here. For the case s=b;t we derive, for
it 0gicalb;t)
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revs(b;t).i
= { specification of rev, part {0c) }
(bt} (z(bst)-1-i)

{ulbit) = at+1 (property 5.3.2) }
(st {at-i)

This formulo is amenoble to application of the definition of ;o this reguires
case danalysis,

cose i=gxt;
(b t)-(at—nt)
= {e-zt=0, (51.1)}

b
cagse i< #t:
(bt (at-i)
= { at-i> 0, definition of j }
t-(#t-1-i)
= { induction hypothesis: (0c) for t, using Ogi<et }
rev-t:i

Thus, we conclude that the specification for rev.{b;t) is satisfied by a
value u |, provided that:

(ta) L -u

{1h)  #u=sat+1

(1c)  wilatl=h

(1d)  (Ai:0gi<at: y-i=rev-tei )

Part (1d) can be satisfied by choosing u = rev-t# v, for scme v : from
(1a} and (1b} it then follows that v must be g list of length 1 . Moreover,
in order to satisfy (1c) , we need:
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(rev-t#v)-{at) = b
{ #l{rewt) = at ( by induction hypothesis) }

(rev-t+# v)e(u(rev-l)) = b
= { definition of + (5.6.0) }
vil =b

S0, for v we can only choose [b] . Using parameter patterns, the definition
for rev can now be encoded as follows:

rev-[1 = {1
& revelb;t) = revi # [b]

The time complexity of the above definition is quedratic in the size
of the list: because #{rev-t} ==t , evaluation of the expression rev-t+ (b]
takes O(t) time for the # operation, plus the time needed for the evaluation
of rewt itself. By means of the Tail Recursion Theorem, this definition can
be transtormad into the following one —— notice that + is ossociotive, that
it has [1 as identity element, and that [blwx=b;x -

rev = revi-[] I[ revi-x[]
& revi-x(b;1)
)

X
revi-{bjx)t

1}

As o result of this tronstormation, the "expensive” use of + has been
eliminated, As a result, the time complexily of revi-x-s is O(as) .

6.2 A tail recursion theorem for lists

The Tajl Recursion Theorem in chapter 4 pertains to functions defined in
terms of an aasociative operalor @ with left identily e . Here, we present a
similar theorem for functions on finite lists that does not require associativity
of the operator involved, at the expense of an occurrence of function rev .
The theorem has been invented by J.N.E. Bos [Hooll; it also occurs in [Bir0]
under the name third duality theorem.

The theorem states the relation between functions F and G, defined
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on L by
{0) Fu[] = X

& F-lajs) =aeF.s
(1) G-x-[] = x

& G-xla;a) = G-(aax)s

theorem €.2.0 (Tail Recursion Theorem for lists); Functions F and G dafined
by (0) and (1) satisfy:

(2) {As: L s:F{rev-s) =G-X-s)
proot: Actually, we prove a more general theorem, namely:
(3) (Ast:L-sal -t: F-(rev-g#i) = G-(Ft)s)

{2} follows from (3) by the instantiation t«[], because F-[]1=X and
rev-s#[]1=rev.s . We now prove (3) by induction on s :

F-(revi]at)
= {revill=1{1and [1#t=t}
F-t

{ (1) (folding) }
G-(F.1).[]

Furthermore:

F-(rev-(a;s)ut)
= { rev:{a;s) =rev-sulal , # is associative }
Frlreveas ([alwt))

{ induction hypothesis , [al#t=a;t }
GefFe{a;th)-s
= { (0} (unfolding} }
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G-(aaF-1)-s
{ 1) (folding) }
Ge(Ft)e(a;8)

For example, with {] for X and ; for & , function F, as defined
by (0}, satisfies (FIS:L;S: Fiws=s) , whereas definition (1) amounts fo

G-x-[1 X
& G-x-{ais) = G-{a;x)s

Ell

Application of theorem 6.2.0 yietds (As:L :s:revis=6-[ls) . Actually, we
now have derived the same definition for rev , with G being revl , as in
the previous section.

It is possible to derive sufficient conditions, to be imposed upon & |
such that F-(rev-s)=F-.s , for all s {Hool1l, Thus, a special case of the above
theorem is obtained that does not contain rev anymore. This version of the
theorem turns out to be a special case of o theerem by 0.C. Cooper [Coo].

6.2 The map ond zap operators

Far given finite or infinite list = and function f, we congider the
list, with the same length as x , that is obtained by application of f to each
element of x . A function map that takes f aond x as parometers and that
yields this list can be specified as follows, with x ranging over L :

(0a)  L-(map-f-x)
(ab)  #{map-f-x) = &x
(0c)  {RAi:Ogicex: mapdoei=f(x-i))

We derive a recursive definition for map . For the time being, we
only congider tinite lists. Because of (0a) and (Ob) , the case [1 (for x )
leaves us no other possibility than the choice map«f-[1=[] . This satisfies
(0c) . For the case a;x . we observe that, on aceount of (0a) and {(Ob) ,
map-f-(a; x} must be e nenempty list. Therefore, a good strategy is to try
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to define map-t-{ajx) as b;y, by deriving expressions for b and y
separately. Notice that this amounts to b =map-fo{a;x}-0 and

(Ai:Ogi<wx: yi=map-t-{a;x)-(i+1)) . Theretfore, we carry out the tollowing
derivation:

mapsf(a; x)+0

{ (0c) }
t-({a;x)-0)

{ definition of ; }

H

fa

{ definition of ; , using ? to denote a value irrelevand here }
(f«a ; 7)-0

The last slep of this derivation serves to obtain an expression of the form
{f-a;4)-0 : we now have derived that map-f-la;x)-0 should be agual to
{f-a; y)-0 , for some y to be chosen loter; this requirement can be satistied
by the definition map-f-la;x}=fa;y . In order to avoid the introduction of a
name for a value that, for this part of the derivation, is irrelevont, we have
used 7 to denote that value. Next, we derive, for i :0gi<ax:

map-f{a; x)-{i+1}
= { (0c) }
fo({a; =) (i+1})
{ definition of ; }
f-(x-1)
= { induction hypothesis: {0c) }

map-f-x-i
{ definition of ; , using ? 1o denote (another) irrelevant value }

(? 5 map-f-x)-{i+1)

The purpose of each last step in these two derivations is to obtain formulae
that, tike the formulae we siarted with, end with 0 and «(i+1) respectively:
we are heading for a definition of the form map-fla; x) =E ; therefore, we try
to derive, for map-f-la;x)+i , a formula of the form E.i . The reintroduction of



6 Programming with lists 136

the operator ; serves to satisty the requiremeni that expression £ be a list:
by induction hupothesis, map-f-x is a list of size #x ; hence, f-a; map-f-x
is a list of size xz{a;x) . From this derivation, we conclude that (0c) is
satistied by wap-f-(a;x) = fta ; map-tx . Thus, we oblain the following
detinition:

map-f+[] [1
& map-f-la;x) = fa ; map-fex

This definition satisfies the specification for infinite lists too. For
infinite lists, formula (0g) , with the universal gquantification over x made
explicit, can be rewritten to (Ai:: (Ax:: map-txi=1{(xi)} ), which lends
itself to proof by induction gver i . Observing that, in the above derivation
for mapf(a;x}:{i+1) , the step with hint “induction hypothesis™ pertains
to maopd-x-i, with i<i+l | we conclude that the above derivation remains
valid for infinite x . The only port in the above derivation not applicable
to infinite lists is the conclusion that f-a ; map-fsx is a list of the proper
size. For this part, however, it sufiices to cbserve that map's definition is
anifermly productive (cf. section 5.5.5); hence map:t has type L =L .

The gperation of applying a function to all elements of a list oceurs so0
often that we introduce a binary operator for it. Because of the resemblance
of this opsrator with function composition, we use the some symbol as for
function composition. Thus, we write fox instead of map+f-x . The ambiguity
caused by the assignment of two meanings lo symbol = must be resolved in
the context in which it is used. As a result, cperator < is associative.

definition 6.3.0: The binary operator ¢ ("map”) is defined as follows. For
function f ond list x:

L-{fox) A alfox)=ux A (Ai:0gicex: (fox}i=f-(x-i))
ju|
property 6.3.1: Functions f and g and list x satisfy:

fa{gox) = (feglex
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Similarly, we introduce an aperator @ ("zap™) to apply o, sufficiently
lorg, list of functions element by eiement to a list.

definition 6.3.2: The binary operator ® ("zap”} is defined as follows. For
list fg of functions and list x , such that &x £ #fs

L-(fsox) A #{fsex) =ax A {Ai:0gican: (fs@x)-i= {si)-{x-1)}

Syntactically, we assume that « and e are left-binding and that
they bind atronger than ; and + . The following property shows that o is

more general than o .
property 6.3.3; For function { and list x we have:

fox = ts@x|[fa=1;fs ]
[m]

postulate 6.3.4 (time complexity of = and @ ): The time complexities of =
and ® are linear in the following meaning of the word: the time needed to
svaluate (fex)4i and (tse@x)ti iz 0(i) plus, of course, the time needed
to evaluate the applications f-(x-j) or (f=:)-{x-])} , forall j,6 0gj<i.
]

axample 6.3.5: Function sgr from example 5.9.3 con be defined by means
of o as follows: sqr-x = sqoxl[sga=axall .

a

example 6.3.6: With sum for the function yielding the sum of the elements
ot a finite integer list, we have, for any finite list « :

#x = sum-loneex) [onea=11
O
example §.3.7; For function t and lists x ,y and 2z, of equal length, the
list whose i=th element is £ (xi)-{y-i)-{z-i} is fox®y®z. Similarly,
(+)ex @y isthe list of sums of the corresponding elements of x and y .
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example 6.3.8: With = for the infinite list of Fibonacci numbers {see example
£576), we have: s-0=0As1=1 and, for i:0¢i, s(i+2)=s-{i+1} +si;
ie, (#42)d=(ad1)-i+5-i . Therefore, & can be defined by:

7]
1

=0;1;: (+)elslt)es |, or, equivalently,
s =0;tllt=1; (+)otes ]

Using postulates 5.10.1 and 6.3.4, we conclude that s has linear time
complexity.

6.4 List representation of functions

In this section we study the following problem. For given function F
with domain Nat , we wish to derive a definition for an infinite list x repre-
senting F , i.e. x's specification is:

(0a) L
(0b) {Ri:0giix-i=F-i)

We do go by induction on i :
%0
= { {ob} }
F.0
= { definition of ; }
(F0; 7.0

and, for i:0gi;
x-{i+1}

{ (ob) }
Fefiv1)

{ heading for a formula ending in -i }
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Fa({+1)i)
= { definition of » (function composition) }
(Fa(+1))-i

The latter formula is not a recursive instance of x's specification: instead
of F, it containg Fs(+1) . Both Fo(+1) and F are -- generalisation by
abstraction —— instances of a more general kind of expression: both are,
because F=Fo(+0) , of the form Fe(+j} , which can be represenied by o
paramster |, 0gj . Thus, we obtain x=y-0 , where y is specified by:

(1a)  (Aj:0g): L -(yj))
(1h}  (Ri,j:0giAOg): ysjri=F lj+i))

By redoing the above derivations, we obtain y-j-0=(F.j;7?):0 , and:

yei-(ied)

{ (1b} }
Faljrit1)

{ aigebra }
Falj+1+i)

gl

{ induction hypothesis: (1b) }
ye (1)

{ definition of ; }
(7 5 y(+1))Civl)

Il

Combinalion of these resulls yields the following definitions for x and y:
(2} o= g0l yj=Fe;uljrd

Thus, for each expressien F , representing a function on Nat, an
infinite-list expression representing that funciion can be constructed, Similarly,
, of length n, such that (Ai:0gicn:s-i=F-i),
we can derive a definition for 2 . We can, however, also use infinite list x|

if we need a finite list s

specified by (0} |, for this purpose: we simply take xtn far 5.
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8.5 List representation of sets

In this and the next two sections, we study representations of infinite
subsets of Nat by means of infinite lists and maniputations thereof. For this
purpose, we introduce some additional notions. The element type of sets and
lists in this discussion is Nat ; this is left implicit. Throughoul this and the
next sections, a,b,i,j have type Nat, st have type L(Nat) , and x4,z
have type L_ {(Nat) .

definition 6.5.0 (set abstraction): For list s, [s] {"set 8") is defined by:

Es] = {%i]i<es)

Sets are represented by lists by enumeration of their elements. Thus,
the set represented by list s is [sl. From this definition, the following
properties follow immediately,
property 6.5.1:

g1l
[a;sl

¢
{a}uls]

For reasons of efficiency, we restrict the use of this representation to
increasing lists,

definition 6.5.2: Predicate inc is defined, on L, by:

inces = (Al,j:i<j<#s:s-i<s])
O
property 6.5.3: For infinile list x , wa have:

incx = (Ai:: inc-{x4i))
[}
corollary 6.5.4: According to lemma 5.5.4.1, predicate inc is admissible.
(]
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property 6.5.5:
incs[]
inc-{a;s) = (Ai:i<ms:a<si) A incs , or, using [-]:
inc~{a;s) = (Ab:[slb:a<h) A inc-s

e now consider predicates P, on Lm , of the following form:
{0} Pox = incex A Ixl=V
for some, fixed, subsel V of Nat . Such predicates ore admissible. The proof
of this requires the introduction of an operotor t (“take"), taking subsels
of Nat and naturals for its arguments, detined as follows. For nonempty V,

we denote its minimum by min-V .

detinition 6.5.6 (the operator 4 for sets): For set V and natural i :

V40 = ¢
a4 = g
vALi+l) = {min-V U (V\{min-V })* | for nonempty V

In words: V4{ is the set of the smallest imin#V elements of V.
a
property 8.5.7: For set V , we have: V={(Ui:: VH}.
[m]
property 6.5.8: For list 5, we have: inc-s % (Ai:: [slti=0stil) .
a .
property 6.5.9: For list 5, s#[], we have:
inc:s % s-0=min:[[5]
inces 2 [sd1l=IsIN{ min.[s]}
|
property 6.5.10: For increasing lists s ond t, we have:
[s]=0t] = s=t
u}
property 6.8.11; Predicate P | as defined by (0) , satisfies:
Pex = (Ai:: inc-{xti) A DIxtill=VHi)
0
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coroliary 6.5.12: P is admissible.
O

We now derive a definition of a function L that maps an infinite
subset of Nat on its representation by an increasing infinite list. I.e, L's
specification is, for infinite set V :

{1a) Lm-(L-V)
(1b) inc-(L-V) A [L-VI=V

Part {1a) will be satisfied by on app=al to the uniform-productivity theorem.
I.e, we investigate the feasability of a definition ot the following form:

(2) LV =a;x
By calculation, we derive for what a and x this definition satisties (1b) :

inc-{a:;x) A [aixl=V
= { property 6.5.5 , property 6,51 }
Ab:[xlb:a<h) A incx A {alulxl)=V
= { set caleulus }
(Ab: [xJb:ach) A inex A Vea A [x]=VA{a}
= { Leibniz , rearranging terms }
Vea A (Ab: (V\{a}):b:a<h) A ineex A [x]=V\{a}
= { definition of minimum }
a=minV A inc-x A [x]=V\{a}
= { \{a} is infinite too: specification of L (1h)}
a=min-V A x=L-(V\{a})

The appeal, in the last step, to the specification of L in order to obtain
a recursive application of L, is correct because (1b) is admissible,
Substitution of the expressions thus obtained for a and x into (2} yields
the following definition for L :

(3) L-V = minV ; Le(V\{minV})
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Notice that the correctness of {the derivation of) this definition crucially
depends on the properties of MNat thal every nonempty aubszet has a minimum
slement ond that every subset V equals (Wi:: V4 ) . In definition (3],
we have uged set operations that are not part of our program notation. In
applications of (3) . these set operations must, thersfore, be replaced by
representations thereof.

6.6 Merge

In this section we use the results from the previcus section o derive
a definition of a function mrg ("merge”) with specification -- remember that
x and y denote infinite lists —- .

incox A ineey # mrgexey = 20z L ez Aineez A [zE=DxIUlyd

In words, mrg-x.y represents the union of the sets represented by x and y .
Using function L from the previous section, we rewrite this specification as
follows:

inc-x A tncey 3 mrgex-y=L-(Ex] W Iyl

This specification shows that the pair of lists x,y cen considered to represent
a set, namety Ix1w [yl . For the sake of clarity, we introduce a name for the
function mapping %,y to IxTuwlyl , giving:

inc-x A dngc-y 3 mrg-x-y = L-(M-x-y)
(4) M-x-y = O[xJ oIyl

In order o be able to apply (3) . we must derive expressions for min-(M-x-y)
and for  M-x-y\{min-{M-x-y) } | for increasing x and y -

min(M-x-y)
{(4))
min-([x] s [yl)
{ min distributes over U )

H



6 Programming with lists 144

min-Ix 1 min rin-Cyl
= { inc-x A incey : property 6.5.9 }
x-0 min y-0

With o as abbreviation for x-0miny-0 , we derive:

Mex-y\{ wins (Mex-y)
= { see above }
M-x-yr{a}

{4
(IxTuiyhiv{a}

{ \ distributes ovar U }
[xIN{a} w [yl\{a}

This formula is symmetric in x and y ; hence, we can continue this derivalion
with one half of the formula only; we distinguish two cases:

case x¥-0gy-0;

[xI\{a}

= {x0gy-0%a=x0}
ExIN{x-0}

= { % =x-0;x¢1 : property 65,1 }
{0y UDLd1 D\ x-0}

= { \ distributes ovar U , incex |, henge ={Ix¢13-(x:0)) }
[xé11

case y-0 < x-0:
[xN{a}
= {y0ex-03a<x0 , a<x0 A incx 2 -([xl-a) }
Ix1

Combination of these cases with the cases for y , elimination of name a , and
apptication of (4) to replace [xd1lUIy) by Me(x¥1)-y , et cetera, yields:
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Mexy\N{ mins (Mexy) 3 = (%0 < y-0 = M-(xdl)-y
fx-0=ys0 > M(xbl}s(ytl)
Ix-02y-0 + M-x(yd1)
}

By plugging these expressions into {3) , we conclude that L and M satisfy:

LMooy} = (x:02y-0 5 %0 ; Le(Me{xd1)ey)
fx-0=y-0 = x-0 ; L-{M-{x¥1)-(yd1))
§x-0>yQ » 0 5 L-{Mx-(yd1)}
}

This formula inspireg us to consider the following definition of mrg .

mrgex-y = (x-0<y-0 + x-0 ; mrg-{x¥i)ey
[x-0=y-0 = x-0 ; mrg-(x+1).(y¥1)
[x-0>y-0 + y-0 ; mrg-x{y¥l)
)

Because, apparently, mrg-x-y and L.(M-x-y} are solutions to the same
delining equation, and because this defining equation is productive, we conclude
that, for increasing x and y, we have rrg-x-y=L-(M-x-y} .

6.7 Filter

As an example of a non-yniformly preductive definition, we study the
function it ("filter”), of type L - L _ . with the following specification:

incex % incs (fltex) A [flbx B={xi |0gi A p-lxi)}

Here, p is ossumed to be a known function having type Nat-»Bool . Notice
that the consequent of this specification is an admissible predicate. In order
that flt.x be an infinite list the sel {x-i]0gi ap-(xi)} must be infinite;
i.e, % must contain infinitely many elements satisfying p . Formally, this
requirement amounts to Q-x ., with Q defined by:
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G = (A LEjigjip-bejl))
S0, we strengthen the antecedent of the above specification to incex A Qix .
In this case, no simple expression exists for the minimum of the set

{xi]0gi A p-(xi)} ; therefore, we take a stightly different approach;

{xi]ogiap(xi)}

{ range split }
{30 | pr{0) } U {x-(i+2) [0 g1 A pelxe(i+1)) }
= { xe(i+1) = (x¥1)+i }
{x0 | p-{x-00} U {(x¥1)ei [0gi A pelixdl)ei)}
= { specification of flit (ing-xAQx % inge{xb1) AQ:(x¥1) ) }
{0 pe(xe0) Y U L fit-(xd1) T
= { cose analysis }
{ p(x0) » {%Q}ULft-0cv1) ]
0 ~p-{x-0) > [ilte(xé1) 1
)
= { property 6,51 }
( p(x0) = [x-0; fit-Oad) 1
0 —pe{:0) > [ftt(xd1) 1
)

Because x-0=min[x] ondbecause {xi|0gi A p-{x-)} isasubsetot [xI,

%D is, in the case p(x-0), dlso the minimum of {x-i|[0giAp-(xi)}.
This is sufficient to guarantee that x-0 ; flt-(x¥1} is increasing, As a result,
we obtain the following recursive definition for flt ;

fli-{la;x) = ( pa-> ajflix
[ -p-a- flt-x
)

This definition is non-uniformly productive. Requirements (12b}, (12¢), (13)
from section 5.5.6 are met, because we have incrx AQ-x 2 inc-(x¥1) A Q-(x¥1)
and incx AQex 2 (Ei::p-{{x¢i)-0)) .
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6.8 Minzagsum

In this section, we derive a program for the minimal sum over all
gsegments -- see olso section 5.11 ~= of an integer list. Formally, we are
interested in function f specified by:

fox = (MINs,tu:x=s+«tsu: sumt) . for finite integer list x .

Here, sum is a tunction yielding the sum of the elements of the list supplied
as its argument. A recursive definition of sum is:

(Q) surm-{ 1 =0
(1) & sum-{a;s) = a+ sum:s

Throughout this section, a and b denote integers, whereas x, =, t, u denote
{finite] integer lists. For f, we derive:

f-[1
= { specification of { }
{MINs,tu:[]=gutsu: sum-t)

{ # property (5.8.1) (applied twice} }
(MIN=,tu:s=[]at=[1Au=[]: sum-t)

{ one-point rule }

sum-{]

{ (0} )

It

Furthermore;

f-la; %}

{ specification of f }

(MIN= tu:a;x=swtsu: sum-t)

{ range split, splitting cazes s=[] and &#[1 }
(MINs,t,u:s=[]Aa;x=snttu: sum-t) min
(MINs,tu:sl]l Aa;x=ssluu: sumt)

{ one-point rule and [J#t=t , dummy substitution s&b;s }
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(MINtu: a;x=twu; sum-t) min
(MINb,s.t,u:a;x=b;a#twu; sum-i)
= { introduction of function g (see balow) , ; property (5.8.0) }
gela;x) min (MINb,s tu:a=b A x=s#twu: sumt)
= { one-point rule }
g-(a;x} min (MINs.tu:x=gstsu: sum-t)
= { induetion hypothesis }

g-{a;x) min fx

The specificatien of function g fotlows directly from the way it has been
used in the above derivation:

g-x = (MINtu:x=t#u: sum-t) , for finite integer list x .

The specification of g is simpler than the specification of 1 in very much
the same woy as above, we can derive g-[1=0 and:

g-la;x)
{ specification of g }

1l

(MINtu:a;x=tsu: sum-t)

= { range split: t=0]1vi#[] and subsequent simplification }
sum-[] min (MINtu:x=1tsu: sum(a;t))

= { (0) and (1) }

0 min (MINt,u:x=1ts#u: a+sumst)
{ + distributes over MIN : induction hypothesis for g }

0 min (a + gx)

Thus, we have derived the following definitions for f and g:

f-[1 =0
& f-la;x) = g-{a;x) min fox
&[] =0

& g-la;x) = 0 min (a+gx)
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By unfolding g-(ajx) and using that Ominf-x=fx , because fx40, we can
reploce the second line of this definition by:

& f-(a;x) = (a+g-x} min fx

By means of tupling. we transform this detimition into the following, more
efficient one -- with hox=[f-x, gex] — :

tox = hexo0d [ D[] = [0,0]
8 h-{a;x) = (asctminb, omin{a+c) § I[ {b,cl=hu i
1

The time complexity of f-x now is Of#x) . By means of the Tail Recursion
Theorem for lists (6.2.0), the definition of h can he transformed into a tail
recursive one: take [0,0] for X and define @ by

a®ib,cl = { (a+e) minb, 0 min {a+c) )

Notice that from s specificalion it follows that f-(rev-x) =f-x , because
sum-(revex) = sum-x . Thus, we ablain the following definition for 1

tx = 6.00,0]-x:0 [[ G-y-[1 =y
g G-[b,cl-(a; x) = G-[{a+c) minb, Omin (a+c)]-x
A

6.9 Carra recognition

As an exercise in the use of M -calculus, we sonsider the following
problem. A finite ligt is called a carré if it equals s#s, for some finite
list = . Consequently, carrés always have even lengths. UWe wish to derive a
definition for function f, having type Lm(Ini)aLm(Bool) . with the following
informal specification:

foxei = "wt(2xi) is a carre” |, 0%
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Thig gpecitication can be formalized as fellows. A finite list 5 of length 2«i
is o carré if sti=sVi , becouse s=stinsti and =(sti)==#(sti}l . Because
xH{(2xi)ti=xti  and  xA(2xi)di=xiti  (property 5.8.3), f's scpecitication
becomes:

fox-i = xbi=xbiti , 0gi
We derive, using indugtion on i :

fexs0
= { specification of f }
x40 =1k 040
= { xt0=[] and xv0r0=1[1}

true

and:

foe- (i1}

= { specification of { }
xA(i+1) =xb(i+1)4(i+1)

= { x=x-0;xV1 , hence x4(i+1) =x-01x¥1ti ; idem for xb{i+1) }
w0 bt = Deblie1))-0; xd(i+1) 414

= {a;x=bjy = a=bax=y}
0= (b li+1)1-0 A xb 14 =xd (I+1)0414

= { Geb(i+1)):0 =2 (i+1) |, xd (i+1)41 =xd24i }
%x0=x-(i+1) A x¥14i = xb24iti

The tormula x¥14i =x+2¢i4i is not an instance of f's specification, Generalis-
ation by abstraction inspires us o consider function g with specification:

grxey-i = xbi=yditi L 0gi

We then have frx=gxx . By adapiation of the above derivations to the more
general situation, we obtain:
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gx-y-0 = true | ond:
grx-y={i+1)
= { as before )
®-0=y=Li+1) A b1t = gb2diti
= { induction hypothesis }
xe0 =y (i+1) A gelxb1)-(ge2]si
= { y-(i+1) = (y¥1}-i , introduction of function h (see below) }
he (¥ 1)+ (ge b 1) {yv2) )i

Using the definition of ; , we obtain the following definition for g:
gexey = true ; h-{yv1)-(g-(x¥1} (yt2})
The specification of function h, of type Lm(lnt)—>Lm(Buol)-}Lw(Bool) , Q|
hetlevsl = %:0=u-i A v |, 0%l
Notice that, because of the occurrence of the global constant x |, this specific-
ation must be understood in the context of g's defining expression. The i-th
glement of h.uwv depends on the i-th elements of u and v only; hence, h
can be defined in terms of u and v by means of the » and @ operators,

as follows:

XeDm=ued A v

{ definition ot function {x-0=) }

(%-0=)-(u-i} A v+

{ definition of » (6.2.0) applied to function (x-0=) }
{{x:0=)eu) i A v-i

{ definition of » and ® (see example 6.3.7) applied to (A) }

((A) o (x:0=) audv)i
By plugging this into the definition for g, we obtain:

gy = true 3 (A e (x-0=) o (yd1) @ g-(xd1)-(yd2)
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By means of parameters patterns, this definition can be cleaned up a little:
g-{a;x)-lbsy) = true ; {A)ela=) ey gx-(yv1)

0t course, it is also possible to derive a recursive definition for b without
the use of o and ® ; such a derivation resembles the derivations of the
recursive definition of « in section 6.3,

The lime complexity of fxtn is 0(n®) . In chapter 10 we show tha
programs with O(n) fime complexity are possible too.

5.10 On the efficiency of infinite-list definitions: a case study

Throughout this section, F is a function of type L =L ~L : we
assume that F-x is list-productive, for all x : L_.x . We consider functions
f and g defined by:

(0) f-x Foxe (fex)
(1} gx = ylly=Foeyl

1

From the first productivity theorem, it follows that f and g have
type L _-L ., and that f and g are functionally equivalent in the sense
that (Ax:L -x: f-x=gax) . Thus, (0) and (1) are different definitions for
the same function.

e now compare the time complexities of { and g . Let the time
needed to evaluate F-x-yti , for arbitrary (infinite lists) x and y, be at
most T.i . Let tf.i and tgi denote the times needed to evaluate f-x4i and
g+x%i . From (0) and (1), using that F-x is productive, we then find the
following recurrence relations for tt and tg:

tf-0
tf:(i+1) 1+ 40+ T-(i+1} |, Ogi
tg-0 1

tgeli+t) £ 2 + T-(i+1) , 0<gi

1

1

The difference between these relations is dus to postulaie 5.10.1,
on account of which y in the expression f.x.y may be considered as a
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globul constant that needs no evaluation; hence, the time needed to evaluate
Fox-yt(i+1) is (at most) T-(i+1) .

Thus, we observe that, generally, definition (0) is less efficient than
definition (1) . For example, if T-i=0{i} we find tfi=0{") and ig-i=0() .
We conclude that the detinitions of { and g really are different.

The above observations influence the way in which we derive programs.
We illustrate this by means of the following example. Function f, having
type £ (Int)+L _(Int), is specitied by:

foxej = (Bi:0gi<j:xil .0¢g]

By straightforward caleulation two sets of recurrence relations can be derived
from this specification:

(2) fox0) =0
fox-(j+1) = %0 + f-(xd1)-] |, 04|
(@3  tx0 =0

foge(j#l) = foxej + %), 0%

{(2) resembles the recurrence relations that are usual for funclions on finite
lists: the function's value is expressed in terms of the head and the tail of the
parameter. Nevertheless, (3} is to be preferred. Both (2) end (3) can be
easily transformed into definitions satisfying t's specification, giving (4)
and (5) respectively:

(4) fox
(5) f-x

0 5 (x-0+) e f-(x¥1)
05 (#)ofx@x

\Whichever definition is used, f has quadratic time complexity. The
essential difference, however, is that, in (4) . 1 occurs in its detining
expression with an argument, viz. xv1 , different from x , whereas in (6)
only fx occurs in its defining expression, Hence, definition (5) has the
same form as (0) . whereas (4) has not. Definition {8} can now be recoded
in the same form agz {1} , which yields a definition with linear time complexity:

tx = ylly=0; (Weyoxl
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So much for a story that serves to show that, when efficiency is
involved, functional pregramming is a litile trickier than one might expect at

tirst sight, This is a direct consequence of the rather complicated -- compared
with sequential programming -- computational model underlying the program
notatien,

6.11 On the introduction of list parameters

In thiz section, we study variations on the following recursive definition
for function f :

foi = Fa{X-i)-(§-(G-i))

Here, F and G are functions and X is on infinite list. We are interested
in fqi anly for nateral i ; we assume G {o have type Nat->Nat .

Evoluation of X-i requires 0(i) time, which may be too inefficient.
In this section, we investigate ways to eliminate the expression X-i from the
above definition in order to improve its efficiency.

A standard technique for this purpose is to equip f with an additienal
parameter representing X-i . I.e, we introduce function f1 with the following
specification:

fL(Xei)ei = £ |, Qg
This yields the following definition for 1 :
flegei = Fea-(f1-(Xj)<j) 10 j=6-i 1

Of eourse, this transtormation only shifts the problem: now we have X.j as
a subexpression, Generally, it would be nice if we could exploit the presence
of parameter a for the construction of an (efficient} expression for X-j too.
Without further knowledge about X , however, we cannot express X in
ferms of X.i . Therefore, we investigate a larger closs of ways to introduce
additional parameters: the parameter needs not be equal to X.i | it suffices
that X-i can be expressed efficiently in {erms of it
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We distinguish 2 cases, depending on the relation between i and | .

+ 15+ Observing that X-i={X$i)-0, and that X¢j=X+i¥(j-i} , we provide f
with an additional parameter representing X+i . If we call the function
thus obtained 2 its zpecification becomes:

f2- (k)i = i, 0gi
Transtorming f's definition accordingly yields:
f2eei = Fe(x-0)-(f2:Ocd (=000 M j=G-i

The expression x-0 has time complexity 0(1) , whieh is an improvement
to the original (i) ; the expreasion x¥(j-i} has time complexity O(j-i)
which may or may not be an improvement to the original O} .

+ j¢i; Observing that X-i=rev-(X*{i+1)).0 , and that
reve(Xt{(j+1)) = rev. (X4 (i+1))4{i-j) ., we provide { with an additional
parameter representing  rev-(XMi+1)) . If we call the function thus
obtained {3 its specification becomes:

{3 (reve (XA(i+1)))-i = f-0 L 0gi
The corresponding definition for {3 is:
f2ay-i = Fe(y-0}- (13- (ydli=j))-j) L j=06+i

fis before, the expressions y-0 and y#{i-}) have time complexity 0(1)
and Q(i-j} ; this is never worse than the original 0(i) .

. true: Without a priori knowledge about the relation between i and j,
the only thing we con do is to introduce the above case onalysis inte the
program. This brings about o combination of the cbove two techniques: the
whale list X can be represented by the pair [reve(Xt) X411 —- or
by the pair [rev.(X4(i+1)), X¥(i+1) 1 -- . Thus, we obtain function f4
with specification:
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4« [revs(X4i) Xbilei = i , 0gi
The corresponding program fragment is:

fa-{y,xl-i = F«(x-0)-(f4-(shift-(j=i)-[y,x1}-j) W j=0G-i ]
where function shift is specified by:

shift-{j=i)- [rev-(xti) , x¥i] = [reva{x#j) ,x4j] , 0gin0gjA Lox
A program for shift is:

shift-k-[y.xl = (kg0 » [yb(=k),rev-(yt{-k}) +x1]
Q30 = [rev-(xtk) #y, xbk]
}

The time complexity of shift-k-[y,x] is O(}k]) .
(end -}

The above program transformations do not suggest such a marked gain
in efficigncy that they seem to be worth the trouble. Yet, occasionally, they
yield an increase of the program’s efficiency by an order of magnifude, This
is due to the recursive form of the above definitions, which allows the use
of amortized complexity -- see chapter 7 == to take into account the con-
tributions of the individual shift-operations. In chapter 10, we shall encounter
an application of this.
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7 Two-sided list operations

7.0 Introduction

In most functional-program notations the only elementary list operations
are ; ("cons"), hd ("head") and tt ("tail”). The reason for this is pro-
bably historical (LISP). Operationally speaking, by means of these operations
lists can be manipulated at their "left ends” only. This restricted choice of
operations allows an efficient implementation: usually, they are assumed to
have 0(1) time complexity.

In this chapter we show that it ig possible to implement a symmetric
set ot finite list operations efficiently: the set is symmetric in the sense that
lists can be manipulated at either end. The operations have 0{1) time
complexity, provided that we content ourselves with, sc-called, gmortized
efficiency ., instead of worst-case efficiency,

The idea behind our design is simple and not new [Gril, but, in order
to be effective, its elaboration requires some care. The idea is to represent
each list by a pair of lists: the pair [x,yl represents the list x+rav.y .
Thus, each list can be represented in many ways, and it is by judicious
exploitation of this freedom that we achieve our goal.

7.1 Amortized complaxity

Without pretending generality, we introduce the notion of amartized
camplexity in a form suiting our purposa.

In this section V is asel and f and t are functions of types V=V
and V< Nat respectively, For v, V-v , we interpret tiv as the cost, in zome
meaning of the word, of evaluation of f-v . Now suppose that we are interested
in a sequence of successive applications of f: i.e. we define a sequence x
as follows:

Vex, (%, is assumed to be known) | and

0 .
xH:L:f-xi , 0¢gi
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Computation of the first n+1 elements of x then costs
(Si:0gien:tx)  If the value of this expressian, o= a function of n, is
0i{n) |, then we say that the amortized cost of each of f's applications (in
sequence x ) is 0(1) . Of courss, this is so if 1 is 0(1) , but this is not
necessary: the requirement thal {Si:0gien:tx) is 0(n} is weaker. The
introduction of amortized cost reflects our decision to be interested only in
the cumulative cost of o sequence of successive gperations.

For the sake of simplicily, it would be nice if we could discuss the
amortized cost of f without intreduction ot sequence x . This can be done
os follows. We introduce o function &, of type VeNat | and we interpret s.v
as the amortized cost of evaluation of f-v . We try to couple s and t in
such o way that, for our sequence x . we have:

(Si:0gi<n:tx) g (§i:0gien:sx) , 04n

Consequently, if s is 0(1) then the cumulative cost of computing the first
n+l elements of x indeed is 0(n)

The following idea for a suitable coupling is —- as far us we know —-
due to Tarjan [Torl. We design, or invent, a function ¢, of type V- Nat, and
define s as follows:

swv = tv+offov)—cov |, forall v, Vv
Under the additional assumption c-x, =0, we derive:

{(§1:0gi<n: t-xi')
= { "telescope summation” }

(8i:0gidn it + oo, -0t} = CoX_ + O
L7

(8i:0gien: b, +c-(f-xi) —c-xi) - O+ X

)
= { definition ot x.

o
= { definition of s 1}

i 1 " — s + O
(Su.Ogmn.sxi) CX + Oy

-

{c-xn;O . c-x0=0}

(i :Ogi-::n:s-xi)
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What does this mean in practice? In order to prove that a function f,
with given cost function t, has amortized cost 0(1) , it sutfices to design
a natural function ¢ , the so-called cradif function, satisfying:

ek, =0 . and
tv + c-{f-v) -c-v ig, as function of v, (1)

Herewith, x, represents the initial argument == or, if one takes a less
functionat point of view, the initial state — of the computation.

The obove remdins valid when f ropresents an element of o whole
cluss of functions, each having its own cost function t. In this case, one and
the same credit function must satisfy the cbove requirement for each pair 1,1

from this class.

7.2 Specifications

The problem to be solved is to implement an extended set of elementary
list operations in such a way that the amortized time complexity of sach of
these operations is 0(1) . Here, lists are finite lists. For this purpose, L,
will be represented by a set V , say, such that the representation of lists from
L_ by elements of ¥ is not unique. The abstraction function mapping vV to
L isdenotedby [-1;i.e [sl is the list represented by s . for s, Vis.

For the sake of homogeneity, we use functions hd ("head”) and tl

("tait”) satisfying, for all %,y :

hd-(x ; y)
x5 y)

Notice that, for non-~emply list x ., hd-x=x-0 and tlx=x+1 . In this exercise
we use L and its associated functions for two purposes, namely to specify
the new list operations and to /mplement them.

The functions to be implemented ara:

3 ("left cons™) and i ("right cons")
Ihd ("left head”) and rhd ("right head™)
It ("left tail™) and rtl ("right tail”)
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Using [-1 and the operations on L _, we specify these functions as

follows; for eny a and tor s, Vs

[o;=s] = [a]+«[=]
fsial = [el+I[al

lhdeg = he-[s] , [=1#01]
rhd-s = hd-{rev-[s]) , IsD#0]
[rtbeal = tLls] , Isl#(]

fril-s] = rev-(tl-(rev.[=])} , Tel#I[1

ramark 7.2.0: From these specifications, the types of these tfunctions con be
derived.
o

Moreover, we need o representation of the empty list; ie. we must
choose o value (], ., V-], , satisfying:

(0,0 = 0

Functions (a;) and (;a) , for every a, and functions 1 and rit
have type V-V . They will be implemanted in such a way that their amortized
time complexity is 0{1) . The functions lhd and rhd do not fit iro this
pattern: they are functions from V 1o slements. Thig is no problem: we shalt
see to it that |hd and rhd have 0(1) (worst-case) time complexity.

7.3 Representation

Qur new lists are represented by pairs of old lists; i.e. we choose
V=1L xL_ .Forfunction [-1 we choose:

[lx,yld = x#revey

This representation leaves us no choice for the definition of [],, : the
only solution of the equation [l=x+reveyy is x=[] A y=[]; hence:

[, = [[L11]
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We now derive da definition for |hd :

thd-Ix,yl

= { specification of lhd }
hdo[[ [x,y]11

= { definition of [-1}
hd-(x+#rev-y)

= { properties of + | definition of hd }
{ x#[] = hd-x
 x=[1 -» hd-(rev.y)
)

Evaluation of hd-{rev-y) takes O(sy) time; hence, the definition
thug obtained does not have 0{1) time complexity, It does, however, have
0{1) time complaxity in the special case x#[lvy=[] . We could, therefore,
restrict set V to the pairs [x,yl that satisty x#{}vy=[] . The conjunction
of this restriction and its symmetric counterpart, y#{lvx=[1, amounts to
x=[]=y=[] , which excludes all possible representations of the singleton lists.
Hence, the restriction x#[lvy=[] is too strong. We weaken it to x#[1vaygl |
or, equivalently, 1gexvaygl . For, Yy, #ysl, we have revwy=y ; thus, we
obtain the following definition for lhd :

lhd-[x,y] = (x#[1 > hd-x
Bx=[]- hdy
)

By a similar calculation for rhd , we conclude that it seems wise to
restrict set V fo those paire [x,y] salistying lgayvaxgl . Together, theze
two restrictions define set V: V now is o subsel of L xL . The relation
defining this subset, also called the representation invariant, is @, with:

Q: (Lgux vaygl) A llgay v axgl)

The definition for rhd then becomes =-- potice the symmetry == :
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rhd-fyx] = (x#[] > hdx
Ix=1[] > hdy
}

For the development of definitions for the other functions we shall use
the following simple lemma.

lemma 7.3.0: ax=1vay=1 > Q
m]
7.4 Left and right cons
The derivation of definitions for ; and ; is straightforward it we

temporarily forget the proof obligation with respect to Q@ . We perform these
derivations in parallel:

Fa;ixyll Ilyxl;al

= { specification of ; } = { specification of ; }
fal+ Dxyll [ ly.x11+ [al

= { definition of [. 1} = { definition of [-1}

[al # x # rev-y y #rev-x # [a]

= { list calculus } { list calculus }

1

{a;x) #revy y+#reve(a;x)
{ definition of [+ 7 } { definition of [-1 }
Tlaz;x,yll . Iiy.a;x]11

Thus, we conclude that the specifications of ; and ; are satisfied by:

a;bxyl = fajx,yl
& [yxlia = [y,a;x]

The expression [a;x,yl , however, need not satisfy Q@ : Q's second
conjunct may be false, but it certainly is true it 1ga#y . For the special case
y=[], we redo the above dervation:
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[a;[x1111
= { s before . with y« {1}
{al +x # rev[]
= { rev-11=11; [] is the identity of + }
[al »x
= { [x,[1] =atisfies Q , hence #x g1, hence x=rev-x }
[a] # rev.x
= { dofinition of [-1}
filalx]]

The expression [[al,x] satisfies 0 because of lemma 7.3.0. Thus, we obtain
the following definition for ; and, similarly, for ; :

a;lxyl =( y#ll>[asx,yl
0y=01-=[lal,x]

)
& [yxlia =(y#[l>[y,a;x]
Dy=[1->1I[x,[all

]

The {normal) time complexity of these definitions is 0(1) 5 in order
that their amortized time complexity is 0(1} too, the credit function must
be chosen such that its value increases by a bounded amount under these
operations.

1.5 Left and right tail

We now derive definitions for 1l and rtl . These derivations do not
yield efficient definitions, but they do provide information on how the credit
function can be chosen such that these definitions have 0{1) amortized time
complexity,

For Itl ., we derive:
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[ itlIx,y1 1

{ specification of 11l }
t0Ix,yld

{ definition of [-1}
- (x+rev-y)

il

Further manipulation of this formula requires distinction of the cases x#I[]
and x=[] . For the case x=[] we have:

t-{x+rev-yl

= {x={1}
th(rev-y)
= { #y=1 (note0, see below) , hence tl-(rev-y} ={1}
[1
= { [1 i5 the identity of = , rev-[]=(1}
{14 reve]
= { definition of [ -1 }
LrrLeral

Hence, for the case x=[] we choose Ul-[x,yl=[([1[1],

noted: From QA x=[] it follows ayg1 . The precondition of W-[x,yl is
[0yl B#0), which equivales x# (] v y#{] . This and x=[] implies
y#£I[] . Hence: sy=1.

O

For the case x#[] we derive;

tl (x+#rev.y)

{ x#[1, definitions of tl and + }
thx w revey

{ definition of [-1 }
Dl yldl

1
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So, for the case x#[], we maoy choose Ul[x,yl=[1l-x,yl, provided that
this expression satisties Q . I.e. we must prove { = Qix,y«tlx,y) . Assuming
0 we derive:

Alx,y e tlaxy)
{ definition of Q }
(Lgal(tlx) v ayg1) A (1gay v 2{tlx) g1}

{ definitions of tl and = }

Qeaxvaeygl) A llgay vaxg2)
{Q=2 1gayvuxg?)
(Zgax v aygl)

e { predicate caleulus }
2 g #x

So, for the special case that x has af least 2 elements the above definition
for [l is correct. Remains the case that x is a singleton list:

tl-x # rev-y
{#x=1}
[1+revey
= { [1 i the identity of & }

revey

= { introduce u and v such that y=u+v (notel, see bhalow) }
revs(u+v)

= { list calculus }
rev-v # rev-u

= { definition of £+ 1 }

[lrevsv,ull
So, for the case #x=1 we may choose t:[x,yl=[rev.v, ul where usv=y .

notel: The decision to split y into parts u and v is inspired by the desire
to transform rev-y into a pair of values. By not further specifying u
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and v we retain the freedom tc choose the most efficient representation.
g

Evaluation of (rev-v,u] takes O(wxy) time, independenily of how u
and v have been chosen. In order to obtain 0(1) amortized time complexity,
the value of the credit function must decrease by an amount that is at least
linear in &y . Ie. o lxyl-elrevev,ul must be linear in #y, where c
denotes the credit function.

7.6 The credit function

In order not to disturb the symmetry we require ¢ to be symmetric
in % and y;ie clxyl=clyx], for all x and y . One of the simplest
such functions is given by:

a{x,yl = #x+my
By a simple calculation it can be shown that this detinilion is egquivalent {o:
c-lxyl = =flxyll

This function is not useful, for two reasons, First, the length of the
represented list increases or decreases by 1 only under each of the list
operations. So, amortized and normal complexity coincide. Phrased differently,
the idea of amortized complexily amounts {o choosing a function ¢ that allows,
every now and then, more substontial decreases of its value. Second, the
second definition shows that ¢ is invariant under changes of representation:
so, this ¢ gives no heuristic guidance when we exploit the freedom to apply
changes of representation,

A function ¢ that does satisfy these requirements is:

elx,y] = |ax-ayl

We leave the proof that the value of ¢ increocses by at most 1 under the left
and right cons operations as an exercise to the reader.
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We now use this ¢ to complete the design of the definitions for 1l
and rtl . In the previous section we have derived that, for the speciat case
#x=1, vatues u and v must be chosen such that e [x,yl-c-[rev-vul is
linear in #y . We have:

c-[x,yl

= { definition of ¢ }
fa#x—ny |

= {ax=11}
loy~-1]

3 { definition of |+ }
#y-1

This formula is linear in #y . Hence, the decrease of ¢ is tinear in #y,
provided thal we see to it that c-[rev-v,ul is not too large:

c-[revev,ul
{ definition of ¢ }

| #(rev-v) —au |

{ properties of # and rev }

[ #v-zu ]

By choosing the lengths of u and v ©s equal as possible we achieve that
clrev-v,ul 1 . Therefore, we choose ¢ and v such that:

U+ Y=Y A SUL 8V g U+l
The pair [rev-v,ul thus specified satisfies Q : this can be shown by a zimple
calculation, From this specification it follows that #u=aydiv? ; hence, we

hove u=ytk and v=yvk where k=wrydiv2 .

Pulting all pieces together we obtain the following definitions for Il
and its symmetric counterpart rtl ;
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[x,yl = ( #x=0-[[1,[11]
D ax=1=[rev-(yvk),ytk] Tk=wydival
0 axz2- [ibx,yl

)

& rtllyx] = (#x=0->10(),111]
0 #x=1- [yM,rev-(yvk) ] Tk=aydiv2]
0axz2z- [y, thx]
)
7.7 Epilogue

A formalized notion of amaortized complexity furns out to be of heuristic
value for the derivation of efficient programsa. In our example, we have chosen
function ¢ with no mare justification than an appeal to a few general criteria.
Once c© hos been chosen, the definitions for il ond rtl con be completed
in a rather straightferward way.

With the list represeniation used in this chapter, reversal of a list
hecomes a trivial operation: we have rev-[{x,yll=[0ux]]1, for all x and
y . Hence Rev [ Rev-[x,yl=lyx]] is a correct and efficient implementation
of rev .
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8 On the computation of prime numbers

8.0 Introduction

Many authors on functional programming present functional programs
for Erafosthenes’'s sieve for the computation of prime numbers, but hardly
anybody supplies a formal proot of correciness, let alone a derivation, In
this chapter we present a formal derivation that gives rise to two different
encodings of essentially the same algorithm,

We use some of the results from chapter &: particularly, we use the
technique to represent functions on Nat by lists (section 6.4), the notations
for the representation of sefs by lists (section 6.5), and function it ("filler”)
for the computation of subsets of infinite sete (section 6.7).

8.1 Specification

We use the name multiples for the natural numbers that are at least 2 .
Throughout this chapter x and y denote multiples, and | and | denote
naturals.  “x is nat a divisor of ¢” is denoted by x{y . The primes are the
multiples that satisfy predicate P, with:

{0a) P = (Ay:y<x:ytx)

Relation { is such that the set of primes is infinite. Apart from this.
no preperties of | are needed fo use this definition. Because the range of
the quantification in (0a) ig finite, P-x is computable for each multiple x .
Definition (0a) is equivalent to the following recursive definition of P :

(0b)  PF.x = (Ay:y<xAP-y:yfxn}
The proof of equivatence of these two definitions requires knowledge of

some properties of { , but for the derivation of programs bosed on {0b) we
do not need these properties, The advantage of (0b) over (0a) is that the
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range ot its quantification is smaller; therelore, we expect that it is ensier to
derive efficient programs from (0b)} than from (0a) .

Similarly, we might use the following, equally equivalent, detinition
of P te derive even more efficient programs:

(0c}  Pex = (Ay-yZex APy ytx)
For the sake of simplicity. however, we restrict ourselves to the use of (0b)

We are interested in a program for the increasing infinite list p
representing the sel of primes; i.e. gport from being an infinite list, p has
to satisfy (1) A (2} |, with:

(1) (Aij:: ig] 2 pai<pej)
(2) (Ax:: Pox= (Ei::pri=x})

0f course, we could have specified p also by p=L-F, where L
is the function defined in section 6.5, Although it is possible to apply the
technique developed in section 6.5, we shall not do so; instead, inspired by
the recursive form of (0b) , we derive a recursive definition for p . next,
by means of the technique of section 6.4, we tronsferm this function into an
infinite list, Because there are infinitely many primes, the above specitication
is meaningful.

Formulae (1) and {2} have been chosen to suit the way we use them
in our derivations, Which form is best-suited for this purpose can only be
discovered during the process of program derivation, by observation of whal is
needed. This illusirates that the formalisation of o program’s specification and
the derivation of the program itself often have to be carried out hend-in-hand
[Dij41. Anather example of this phenomenon is given in chapter 8.

8.2 Darivation

The purpose of the following derivalion i= to obtain a characterisation
of p-j interms of pri, for i:i<j only. We stort with the observation that
{3) foilows, by instantiation, from (2) , and that, for p  satisfying {2},
{Ob) is equivalent to (4) , with:
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(3} (Ri:: Plpei))
(4} Px = (Ai:pei<x: pitx)

We derive:

P-(p-j}
{4}
(Ri:piic<pj: prifp-j)
{ (1))
(Ri:i<j: peifp)

Moreover, p-j must also satisfy (Ai:i<j: p-i<p-j) ; this follows
directly from (1) . Hence, p+j is a solulion of the equation x:(5a) A (Sb) ,
with:

(5a}  (Ai:igj: priex)
{(sb)  (Ri:i«j: p-itx)

The question now arises what solution p-j is; we prove that it is the smallest
salution, by case analysis. For x satisfying {5a) A (Bb) , we have:

Pex
{2}
(Ei::pei=x)

= { range split }
(Ei:igjpei=x) v (Ei:jgi:p-i=x)

= { (ga)» ~{Ei:i<¢j:p-i=x) }
(E1:jgi:p-i=x)

and:
—Pax
= { (4) ; de Morgan }
(Ei:pei<x:~({p-ifx))

{ range split }
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(Eivicjapiax: a(pifx)) v (Ei:jgiapicx:alp-idx)]
{(Bb)= =lEi:igjnpiex: ={p-ifx)) }
(Ei:jgiapicx:lp-ifx)}

> { predicate calculus }

(Ei:jgip-isx)
Hence, in either case we have (Ei:jgi:p-igx) , and:

(Evojgizprign)

{ trading }
(Ei::jginpigx)

{ {1) (using A=B=-A=-B) }
(Ei::p-jgpinp-igx)

{ colculus }

prj € x

H

S0, we have (Ba) A (b} = p+j £ x ; hence, we conclude (B) , with:

(6) pri (MINx: Q-jx:x)
(7) Gejox = (Ai:i<):p-i<x) A (Aizi<j:p-itx)

L

We conclude this section with the remark that the whole development is
complicated a tittle by our (deliberate) intention not to use properties of f :
actually, ¢ is such that (Ai:i<j:p-idxd = (Aiigj:p-iex) .

8.3 The first program

From (7) we can derive the following recursive definition of @ :

(Ba) Q0ux = frue
(8b)  G-{j+1}ex = Qejex A prj<x A pojfx

Formula (8b) con be simplified a little, al the expense of some case analysis:
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Q-(j+1)-(p-j)
= { (8b) ; -{p-j<p-j) }
false

and, for x:p-j<x;:

Qe(j+1)ex
= { (8b) ; prjex }
Q-j-x A p-jtx
Now suppose that set Q-j is represented, -- in the sense of section
6.5 -- by an incregsing infinite list q, say. Because q is increasing we

conclude, using (6) :
p-j = q-O
Furthermore, we have:

Q-{j+1)
{ see above, now in terms of set operations }

{x [ @ A pjex A prjfx}
= {Qj=Lq1}
{a-i | 0giAp-j<qei A prjtgei}
= { range split }
{q:0 | prjeq0 A prjtap0} U {ali+1) | Ogiapjege(ist) A pridgli+1) }
= {pj=q0, so -{pjeq0) A p-jxq-(i+1) , g-(i+1) = (g¥i)-i }
{{q¥1)-i [ 0gi A g-0F{q¥1l)-i}
= { speacification of fit , see below }
Lflt-(q¥1) 1

Here, we have used function flt (“tilter”), as discussed in section 6.7, with
(g-04) for the hoolean function defining the subset of its parametar, fli has
type L_-~L_ ; we recall its specification here. In it, g0 occurs as a globat
constant:
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inces % inc-{flt-a) A [fltsT={5i | 0gi A q-Ots-i}

S0, if g represents Q-j then flt-(gél} represents Q-{j+1) . More-
over, from (Ba) it follows that Q.0 is represented by (the increasing infinite
tist) from-2 Il trom-i = i;trom.(i+1) 1 .

We now introduce funclion sieve with specification:

(Ag,j:L_-q:incg A [gl=0Q-f = sieve-g=p¥ )

tlle have:

sieve-q

{ specification of sisve, assuming inc-galgl=0a.j }
P
{ M-calculus }

il

pei o5 pé+1)

{ see above , specification of sieve }
q-0 ; sieve-(flt-(g¥1))

Thus, we obtain the following program, wetl-known as Eratosthenes’s sieve:

programo: sieve-{from-2)
[ sieve-(x:;q) = x ; sieve{fltq)
[fltfy;s) = { xfy = yifiks
f-(xty)» fit-s
)
1

i from-{i+1)

& from-i

i

For our particular relation {, expression {xfy) can be rewrillen
as ymodx#0 . Actually, it is possible to avoid the use of div and moed by
construction of a special-purpose version of fit.s : flt-s is the list obtained
from s by omission of all multiples of x .
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8.4 The second program

The derivation of our second program is bosed on the observation
that predicate Q-] consists of two conjuncts that can be treated differantly,
For this purpose, we name these two conjuncts:

(9a)  Qasjex = (Ai:igj:peiex)
{gb}  Qbsjox = (Ai:i<jp-ifx)

Then, we have p-j= (MINx: Qa+jsx Alb-j-x:x} . Moreover, Qo and Qb have
the foltowing proparties:

Qa-jrx 2 Qaejelatd)

(MINx: Qa-0-x:x} = 2

(MINx: Qe (j+1}ex:x) = p-j+1

Qbejex is computable, provided that p4j has been computed

From these observations we conelude that p. can be computed by
means of Linear Search; ie. we introduce function g with the following
specification:

gx = (MINy: xgyalbejoy-y)

Then, we have p-j=g-{MINx:Qa-jx:x) . In order to transform p into o list,
we introduce function f with specitication:

(Aj:: f{MINx: Qa-j-x:x)-j = pdj}
Here, we have equipped f with an additional parameter right away: somehow,

we need a simple representation of (MINx:Qa+jex:x) . Using the above oh-
servations and the technique of section 8.4, we obtain the following program:



programi: pllp = 2.0 oy = gy ; f-(gyr1)-(j+1)
fgy =gy
& gox = { Qbejox =+ x

1 -Qb-jex » g-(x+1)
)

1

The introduction of nome p in this program IS necessary because
of the recursive occurrences of p in expression Qbej-x . Ob-j-x con be
eliminated from this program, in various ways, by means of the elementary
programming techniques. We leave this as an exercise to the reader. One of
the possible programs that can be obtained in this way is:

programz; pllp =120
[ty = gy ; f-(gy+s1)-(j+1)
I gy = g1-p-0-y
& gl-gkx=_(k=] » x
Jkej =
( g0fx = gi-{g¥l){k+1)ex
[-{g:0tx) 2 gi-p-0-(x+1)
)
)
1
1
I
5]
8.5 Epilogua

The derivations of program0 and program?2 have a large part in common,
Yet, the two programs leok very different. Both programs can, however, be
evaluated in such a way that the same { operations are performed in the
same order. In this respect, both programs can be considered as realisations



8 On the computation of prime numbers 178

of the same abstract algorithm, the essence of which is captured by formuiae
(6} and (7) . On the other hand, the two programs exhibit some important
ditferences,

Program@ is simpler and shorter than programz. The former also is
more abstract than the latter, In program0, for instance, infinite lists are more
heavily used than in program2; moreover, its evaluation depends more on the
use of lazy evaluation than program2 does. We illustrate this as follows.
Suppose that we are interested in ptn , i.e, the finite list containing the first
n primes, only. In order to account for this, we modify program2 by replacing
the definition of function f by:

fogej = {j=n =~ []
Bj<n= gy ; f(gyt1)e(j+1)
[£...1

Now, the program contains no infinite lists and the only laziness required
during program evaluation iz that no guarded expression is evaluated before
evalugtion of its guard has yielded value true . In program0, ptn equals
sieve-(from-2)4n ; because this value is computable, there exists a natural
m such that sieve:(from-2)tn = sieve:(from-2¢m)4n ; thus, the infinite lists
can be eliminated from program0. It suffices to extend the definitions of sieve
and flt with sieve-[1=1{1 and ft-[1=[]1. The problem is, howaver, that i
requires quite some number-theoretic knowledge to determine a sufficiently
small estimate for m . As a result, it is eosier to obtain a sequential program
trom program?Z than from program@; because the definitions of f and gl are
tail recursive, program? almest /s a sequential program,

From the above we conclude thal, when the program is intended to
be executed by a functional-program evalustor, programO is to be preferred;
when, however, the functional program is only used as a stepping-stone in the
development of a sequential program, programd is better avoided. For the time
being, we do not know whether program2 can he derived, by simple program
transtormations, from program0.

The programs derived in this chapter are correct for any relation 4
such that set P, as defined by (0b) , is infinile. For example, by replacing
4 by | {"divides") we obtain the set of al! proper powers of 2.
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9 Minimal enumerations

9.0 Introduction

The problem to be solved is the design of a program for the computation
of a, so-called, minimal enumeration ot {the elementz of) a given bug. Such
a program can be uszed to solve preblems ez the well-known fravelling-
salesmon problem. The jargon for this kind of programs comprises terms
like backtracking and branch-and-bound techniques. Here we intend to show.
by example, that such programs can be derived from their specifications by,
mare or less straightforward, calculation.

We present derivations of two functional programs; the first program
can be characterised as straightforward backtracking, whereas the second
program, a refinement of the first one, contains an application of the branch-
and-bound idea. Finally, we show that these programs can be implemented
quite easily as sequential programs.

9.1 Specification

Throughout the discussion of this example, we adopt the following
convention for the types of the variables used:

%,y : finite bag (of elements) |

s.tu ¢ finite list (of elements)

a,b : element (of either bags or lists)
de : Int

The type of the elements of the bags and lists is irrelevant for our discussion,
For bags, we use the following notational conventions. The emply bag is
denoted by ¢ . The singlefon bag containing element o {once) is deroted
by {a} . Bag summation and subtraction are denoted by + and - .

Lists can be considered as representations of bags -~ by enumeration
of the elements —— | The abstraction function, mapping lists to the bags they
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represant, is denoted by [-7 : ie, informally, we have:
(=] = "the bag represented by s

Gradualtly, i.e. not until the need arises, we replace this definition by a more
formal one. We caoll lisl s an enumeration of bag = if [sl=x.

The problem con now be stated as follows. For C a fixed function, of
type L =Int, we are interested in function f specified by:

(o) fox = (MINs:{sl=x: Cis)

According to  (0) , we confine our attention to the minimal value of C over
all enumerations of x ., The programs thus obtained can be easily modified
to include the computation of a specimen of such a minimal enumeration; we
leave this as an exercise to the interested reader.

9.2 The first program
We use induction on the sire of x :

t-g

{ (0}
{(MINs:[sl=9g: C.=)

{ (1), see below }
(MINs:s=[]: C-s)

{ one-paint rule }
C.[1]

The second step in this derivation is correct, provided that [ -] satisfies:
(1) [el=¢ = ==

Formula (1) is part of the (formal) definition of [-01. For x, x#¢ , we
derive:
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fox
{ (o)}
{MINs: [sl=x: C-a)
{ [al=x A x#e 2{(1)} s#[] , detinition ot nenemply tists }
{MINg,t: [a;tl=x: C{a;t))
{ (2), see below }
(MINg,t: aex A [t1=x-{a} ; C-(a;t))
{ nesting dummies }
(MING: asx : (MINt: ftl=x-{a} : C-(a;t)) }

I

Formula (2} is the second part of the definition of [-1, uos we need it:
(2) fa;tl=x = aex a [t1=x—{a}

That we are heading for a definition of [-] in the form of o few equivalences
is not surprising. Such g definition enables us to replace the range of the
quantified expression by another ane without affecting the value of the expres-
sion, From (0) we see that we are only interested in ¢ definition of the
solutions of the equation s:fsl=x, for given x . (1) and (2) provide
such a definition, in a recursive way.

The term (MINt: [tD=x={a} : C-{a;1)) of the expression derived
above resembles the expression in (0}, but it is not an instance of it; thus,
recursive application of {0) is prohibited. The difference lies in the subex-
pressions s and ajt, as they occur as arguments of C . Both are, however,
instances of an expression of the form uws . By generalisation by absiraction
we obtain the following specitication for function f1 , a generalisation of f:

{3) fi-usx = (MINs : [s)=x : C-(uns))

Hence, we may use {1.[1 for f. The above derivation can now be redone
as follows:

1.1
{ as betore (mutatis mutandis) }
C+u



183

For =, x#¢ ;:

fl-u-x
= { as before (mutatis mutandis) }
(MINa: aex : (MINt: [1]=x-{a} : C-(unfast}) ) )

= { a;t=[lal#t , # is associctive }
(MINa: aex : (MINt: [t} =x—{a} : C-(lunlallwt)) )
= { induction hypothesis {3} }

{MING: aex : f1-{uslal)-(x-{a}) )
= { introduction of function g , with specification {4) }

g-x
{4} gy = (MNa: aey @ (e(unlal)(x={a}) ) , for y y<x

The specification of g is oblained by replacement of constant x by
a variable. Notice that we have replaced the first occurrence of x  only.
From (4) , a recursive definition for g can be obiained by straightforward
calculation, Thus, we obtain our first program. Operationatly, this progrom
can be considered as a backiracking algorithm: in parameter u altl enumer-
ations of the bag are "built up”, and evaluation of g-x generates recursive
applications f1-{u#[b])+{x-{b}) , for all b in x.

programd:

f1-[]

[ ftux ={ x=¢ » C-u
Ux#d » gxllgy=(y=¢g =+

0lyxeg » fi-{uwlbl)-{x-{b})} min g-(y-{b})
il b:bey X

)
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remark 9.2.0: The where—clause [ b:bey | does not specity which alement
of y is to be chosen, In this stage of the design the choice is irrelevant.
Uhen it comes to the implementation of the program, and, particularly, to
the choice of o representation of bags, this freedom can be exploited.
Value o in this program is used as the identity of min . It may be
replaced by any integer d satistying: (As:[sl=x:C.s<d); d may
depend on x . Alternatively, al the expense of slightly longer code, o
can be eliminated fram the program by means of a simple transformation,

9.3 The second program

Frogram0 coniains several possibilities for further manipulation.
The definition of g, for instance, is linearly recursive and it containg an
associative operator, min , with identity oo . Hence, we may apply the Tail
Recursion Theorem and replace the subexpression g-x i gy=... 1 by the
following, equivatent, expression:

{5) glecox [ gledy=( y=9¢ + d
Iy#e + gi-(d minfl-tun(BI)-(x-{b})) - (y-{b})
[ b:bey
)
1

Notice that g1 can be specitfied in terms of g as followa:
(8) gledey = d min gy , for y: y&ax

remark 9.3.0;: The above step and the next one can be performed in gither
order. The order of these steps iz irrelevant o the extent that the same
final solution can be obtained in both ways. We have chosen the order
that gives rise to the shartest presentation, but the only way to know this
seems to be to try both. Generally, larger examples involve longer formulae,
and long tormulae offer greater manipulative freedom than short ones; the
problem how to choose the nexi step grows accordingly.
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The following Iranstormation serves lo increase the efficiency of the
program. In this respect, subexpression ¢ min f1-(uwlbl)-(x-{b}) s of
interest: its value is d whenever dgfi-(uwlb])-(x-{b}} ; a potentially more
efficient program is obiained it we can find @ way to establish the truth of this
inequality without evaluation of its right-hand side. Therefore, we investigate
the following generalisation of 1, called 2 —- so that f1-ux=12-00-u-x —= 5

(7} f2:@yex = @ min fl-usx

We then have:

aggflou-x 2 f2e-ux=e

e derive:

ag ft-u-x

= { (3) ; property of MIN }
(As: [sl=x;:egC (uxs) )

& { assume (8), see below }
(Ag: lsl=x:e5Dwm}

= { predicate calculus }
¢ D

The purpose of this derivation is to obtain an approximation of C-(uws) that
does not depend on s . We therefore assume the availability of a function D,
of tupe [, +Int, such that D-u provides a lower bound for C-{u#s) , for
all 5 :ie D is ossumed to satisty:

() (As: Bsll=x: D-ugC-luss) ]

We conclude:

{9) egD = f[Rekxce

Furthermore, we derive:
f2-e-u-¢
= {(D}
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¢ min fl.u.¢
= { unfolding {1 (programo) }
e min Cou

and for =, x#¢ :
{2e@evx
(1)}

& min flaux

{ unfolding 1 {programQ, x # ¢} }

e min g-x
{(6)}
gleaex .

n

We replace in  (5) expression d min f1-(u+[b])-(x-{b}) by the
equivalent 2-d-{fus{bl}-(x={b}) {(using (7) ). Since the values of d emerging
during the computation of gl-e-x form a descending sequence, the chance
that, during evaluation of {2-d-(u+[b1)-{x—{b}} , (9) can be opplied is likely
to increase as the computation of gl-e-x proceeds.

Putting all pieces together and sliminating name f1  we obtain our
second program.

programi:

f2-c0-[1
[ t2-erux = ( egD-u 3 e
le>Dunx=¢ + eminC-u
leDunAx#a =+
glhexligldy=(y=¢ =>d
Dy#g —» gi-lf2-d-(uslb])-{x-{b})}-(y-{b})
[ b:bey H
)
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This program can be considered as o branch-and-bound algorilhm: by meons
of the alternative e gD > & the, so-colled, search spoce of the algorithm
iz bounded. Hence, this program may be expected to be more efficient than
program{; in the worst case, however, the two programs are equivalent.

9.4 Implementation

Using programl as a starting peint, we now construct a sequential pro-
gram for 1, i.e. for f2-w0-[1 . This is easy, provided that we permit ourselves
the use of a recursive function for the implementation of 2 : the pattarn of
recursion of f2 is too complicated te be aimply translatable into iterative form.
The sequential versions of f and 2 oare colled F ond F2 respectively.
The (tail recursive) definition of gl , on the other hand, can straightforwardly
be recoded as an iteration.

To make the implementation a little more interesting, we also choose
a representation of variables u, x, and y: instead of lists and bags we
use arrays. The choice of a suitable representation can be made in many ways.
Because the design of such representations is not the subject of this study,
we simply present one of the possibilities, with no other heuristic justification
than that it is simple und reasonably efficient. We proceed in a number of
steps:

+  Observing that [us[bll+ (x~{pb}} = [ul+x, we conclude that, during
evatuation of f2-e-u-x , the value of [ul +x is constant, and, hence, equal
to the initial value of x [(because, initially, u=1[]). So, we decide to
represent u and ¥ together by an array s-i{0gi<N} ond anaturat n,
according to the following invariant:

OgnzN A u=si(0gi<n) A x=0ailngi<N}]
+  This representation is such that [s«i{ngi<M1 is invariant under per-
mutations of s+{ngi <N} . We exploit this freedom.

- Simitarly. using yEx , we represent y by a natural m , as follows:

ngmgN A g5=|Is-i(in<N)B
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- Observing that the difference between the valus to be supptied for s . in
the recursive application of F2, and the parameter s itself is rather
small, we decide that parameter = can be turned into a global variable
of F2 . Evaluations of F2 do not affect the value of s, although s is
maditied femporarily during these evaluations,

«  For the implementations of functions C and D we have used the same
names. Their parameterlists have been adopted o the changed representa-
tion of list u .

tend «)

remark 9.4.0: Some of these transformations could aiso have been applied
to the functional program. The conversion of a parameler into a glebal
variable, thus tntroducing side effects, is, by its very nature, impessible
in functional programs, Not surprisingly, it seems wise to congider such
transformations as optimisations to be applied only when the code has
been almozt completed.
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program?2:

tunction F(s+i{0gi<N):array of element) : Int
= [ function C(n:Nal) : Int = [ { value: C-u } I
; function D{n:Nat) : Int = I[ { value: D-u }
; funetion F2(e: Int;n: Nat) @ Int
=i if egD(n) +F2:=8
0 ex0(n) An=N - F2:=e min C(n)
[ e>Di{n) An<N = |l var d:Int ; m: Nat
;dom o= en
{ invariant: y=Is-ilmgi<N)JAangmgN
A gl-e-x=gl-dy }
cdom#EN 2 { bh=sm A slnlex A s:mey A
y-{by=[s-i(m+1 g i< N}l }
s:swap(n,m)
{uwlbl=s-i{0gien+s1) A
%-{b} =[s-iln+lgicN}T }
d = F2(d,n+1)
5:awap{n,m)
{ y—{b) =Os-i(m+1gi <N }
m ;sm+1

od { y=¢ . hence: gl-e-x=d }

F2:=d
I
fi
V{endF2}
cF = F2(00,0)
I{endF}
[}
4.5 Epilogue

The only iechniques used for the derivation of program0 and programi
are recursion and generalisation by abstraction, plus a littte bit of common
sense: although the programs and their derivations are net completely trivial
—— several variations are possible —- , they are not very difficull either.
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In this respeci, it is quesiionable whether notions like "backtracking” and
"hranch-and-bound” are =o elusive that they deserve special names.

A common way to design sequential programs for this kind of problems
is to impose a total order on the sel of all potential solutions, the so-called
search spaoce, of the problem. This order is chosen in such a way thot the
elements of this set can be generated, in a simple way, by means of an iterative
sequential program. For exemple, for the problem discussed in this chapter one
could use the lexicographic order on the set of all enumerations of the given
bag. The advantage of a recursive characterisation of the search space is that
the order in which its elements are computed can be left implicit. Moreover,
when this order is chosen in too early a stoge of the design, this may give
rige to an unnecessary complicated program. For example, program?2 is simpler
than the corresponding iterative program based on the lexicographic order.

Functional programs contain less (explicit) information on the order in
which the steps of the computation have to be performed than their sequential
counterparts. In this respect, functional programs gre more abstract than
sequential programa. The example in this chopter shows that functional pro-
gramming can be used tor the design of absairact versions of an algorithm that
eventually will be encoded as a sequential program, The use of functional
programming might thus embody o meaningful separation of concerns: during
the design of the functional progrom, attention is focused on the relations
between the values to be computed, whereas the concern for the order in which
these values will be computed iz posipened until the moment the functional
program is transformed into @ sequential one. On the other hand, the difference
between the two kind of programs is not so large -- particularly not when the
sequential-program notation allows recursion — that the gap to be bridged
by the transformation is too large to be manggeable,
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10 Pattern matching and related problems

10.0 Introduction

In this chapter we derive a program that can he considered as the
core algorithm of a number of efficient programs for Knuth-Morris-Pratt-like
pattern matching [Knul, periodicity computation, ond carré and overlap
racognition. As @ by-product of our derivation the, so-called, preprocessing
phase of the KMP algorithm emerges in this design as an instance of the same
problem, Despite the use of —- in comparison to array operations -— not so
efficient list operations, the program has linear time complexity.

We proceed as follows. First, we derive a program without taking into
account the inefficiencies of the list operations, Second, using the technigues
of chapter 6, we transform this program into a more etficient ane by elimination
of all inefticient list operations. Finally, we show o number of applications
of the program.

10.1 Specification

Without giving further justification here, we stipulate that we are
interested in function mpp, of type L L - L (Nat), with the following
informal specification:

mpp-x-y-§ = "the maximal {ength of any prefix of x that is a
suffix of ytj" | 0gj

The elements of infinite lists x and y ., in this specification, may have any
type on which = is a permitted operation: test for equality will be the only
operation applied to these elements,

The above specification can be formalised as follows. For finite list
5 , the suffixes of 5 dare the lists séi, for | :0<ig<#s . The suffixes of
ytj are ytj¥i, 0gigj, which have length |~i . By means of the dummy
substitution i¢j-i we oblain for the suffix of ytj of length i :
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yhiv(j=i)
= { t-caloulus: ytlarb b =y¥bta , j=i+(j-i) }
yb{j-i}ti

Thus, we obtain the following formal specification for mpp :

mppexeysj = (MAXi:0gigj A xti=ydlj-idti: 1) . 0¢]j

10.2 The firgt progeam

In order to separate our various concerns we introduce some nomen-
clature. Firal, we expect that, throughout the discussion, mpp's parameters
will occur mainly os global constants. Therefore, we abbreviale mpp-x-y to
Z and we carry out the derivation in terms of z . Second, we introduce
predicate C , as follows:

(CO)  Ceivj = xhi=yd(j-id% |, Ogig]

Using C and mpp's specitication we obtain the following specification for
z . Init, the requirement that z is a list has been left implicit,

{z0)  z+f = (MRXi:0gigjACij:i) , 0gj
This specification iz meaningful, because of the following property of C -
(C1) C.04 . 0gj

The expreasion in (z0) can be easily turned into a program by an
application of Linear Search: replacement, in this expression, of the left-most
ocourrance of | by a parameter yields function g with specification:

gk = (MAXi:0€igk A Coijii) , Ogkg]

In this formula, | occurs as a global constant: for this | we have z-j=g-| .
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The derivation of a definition for g is straightforward, Ignoring, for the time
heing, that z should be a list, we thus obtain programd.

program0:
zll2zj=gj i gk={ Ciksj 2 k

[-Cekesj » g (k-1)
)

1
G
Although simple and correct, this program is not efficient, for two
reasons: the rather large range of the Linear Search -- evaluation of g
requires 1+j-g-j unfoldings of g ——, and the fact that evaluation ot Cekeej

may require k comparisons of list elements,

In arder to obtain a more efficient program, we take into account some
of C's properties, in the form of the following recurrence relalion:

(€2)  Coliwl)-(j+1) = Ceief A B-i-) , Ogig]
(8) Beivj = % =Y , Ogig]

1l

This relation cannot be exploited for z-0 (see (=0)). Therefore, we need
some case analysis. Using (z0) and (C1) we derive:

z0 =20

Furthermore, we derive:
zi{j+1)
{ (z0) }
(MAXi:0gigj+l A Ceiefj+t) - i)
{ intreduction of function g {see below) }

g+
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fs before, function g is introduced by replacement of the left-moust occurrence
of | by a parameter; ils specification is:

(g) gk o= (MAXi:0gigksl A Coie(j#1) ;i) , Dgkg)

Fram this specification we obtain, again using Linear Search, programi.

programl:
z Il z0 =0
B zdj+1) = gj [ gk = ( C-(ks1)-(j+1) 3 k+1
B-C+(k+1)+(j+1) AD=k 3 ©
B-C-{k+1)-(j+1) AO<k » g-(k-1)
}
1
¥
a

Since g-k has precondition 05k, the guard of the recursive appli-
cation g-(k-1) must be strengthened with 0<k and the case 0=k must be
dealt with separately. Hence the 3-way case analysis in the above progrom.

We con now apply (C2) and replace in programl all sccurrences
of Cilk+1){(j+1) by C-k-jaB-k-j . Thia, of course, does not change the
program’s efficiency, but we gain something if we succeed in eliminating the
terms Cuk+j @ evaluation of B-k-j requires omly 1 comparison.

About the simplest way to eliminate C-k-j is to strenghten g's pre-
condition with it -- or with its negation; in our case this is not sensible ««
and s0 we do. This is a rather bold decision: it remains to be seen whether
we can get away with il.

Strengthening o function’s precondition generates an additional proof
obtigation for each application of the function. In our case we have ihe
applications g+ ond g-(k-1) .

+ g-j: We cannot guarantae C-j-j to hold. We may, however, replace g+
by g-h ., say, provided that h satisfies (h0) A (h1) A (h2) |, with:
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(R0}  Oghgj
{hi}  Cohej
(hz)  gj=gh

Requirement (h2) can be met as follows:
gj=gh
« { (g}, property (*} (see below) }
(Ri-h+l<igj+l: =C-i-(j+1})
{ dummy substitution iei+i }
(Ri:h<igj: aC-{i+1):(j+1))
& { (C2) ; predicate calgulus }
(Ri:h<igj: aCij)

So, (h2) tollows trom the stronger (h3) , with:
(h3)  (Ai:h<igj: aC-i-j)
Property {*) referred to in the ahove derivation is:

(%) For predicate P ond for natural h,j : Dghgj:
{(Ri:heigj:-P-i} = (Ai:: 0gigj AP = 0gighAP-i )

We have:
(h0} A {h1) A (h3)
= { definition of MAX }
h=(MAXi:0gig) A Ceivjr i)
{ (z0) linduction hypothesis) }

h=2z:j
So, we replace g+ by g-{z-j) .

+ g-lk-1): Here, the additional proof obligation is C-k-j= C-{k-1).j . We
follow the same pattern of reasoning as we did for g-j : we try to replace
g+(k-1)} by g-h without affecting the value of the expression and such
that 0ghgk-1 A C-h-j . By a {very) similor calculation as chove we find
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that
(ha)  (MAXi:0¢igk=1 A Coivj:i)

s a suitabte value for h .

Formula (h4} is o generalisation of the expression in (20) . Far
arbitrary T, (h4) cannot be expressed easily in terms of z . For C
defined by (CO) ., however. we can perform the following calculation. This
caleutation constitutes the crucial invention behind the KMP-algorithm.
The idea is that we try to replace | in C:-j by k-1, as a result of
which an instance of (z0) is obtained. Notice that we are dedling with
a recursive application of g in the definition ot g-k: hence, we may
use precondition C-k+j . For ik . 0gigkn1g]j=1,6 we derive:

Ceivj
= { (o} }
xPi=yd{j-1)h
= { using C-k-j , see below }

xh = x¥ b (k-1-i)4]
= { (CO) with yexdt | let C*=Clyexvi) }
C*ie(k-1)

where:

yb (=it

= { j-i=j-k+k-i , ybla+rh) = yadb }
g =k ) (k=i ) i

= { ybatb=yt{arhlba , k=i+i=k }
yb (%) kb (ki)

= { C-k-j |, hence: yd{j-k)tk==xtk }
wtd (ki)

= { k=i+k-i , xt{a+bI¥b = x¢hta }
x¥{k-i}ti

= { k=i =1+k-1-i , x¥{a+b) =xdadb (heading for k-1-i) }
Kbt (k-1-i)M
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We conclude that (h4) equals (hG) , which, indeed, ig an instance
of (z0) , albeit that y has been replaced by xt1 :

(hg) {MAXi:0gigk=1 A C%is(k-1): 1)

So, we replace g-(k-1} by g-(zz-(k-1)) where zz=mpp-x-(x¥1) . The
use of zz-{k-1) is correci, by induction hypothesis, because kgj . and
so k-1<j+1 . This is important because the general case comprises the
special case y=x¢1 ., where we have z=zz .

{end +)

By application of these (romsformations to programi we obtain the
following pragram for mpp . In this program, the terms C-k-j have been

eliminated, the terms B-k-j have been replaced by =x-k=y-j, and the
definition of zz has been "lifted” to the most global level possible -- at the
expense of an extra name, mpx , for mpp-x —- . Lifling zz's definition

is necessary for the sake of efficiency; now zz may be considered os a
constant throughout the program for mpx (ct. section 6.10).

program2:
mpp Il mpp-x = mpx
It mpx-y =z
[ z0 =0
& z-(j+1) = g (2]}
[ gk = ( x-kmy-| 5 k+1
0 x-k#y-j A0=k + 0
[ x-k#y-j AO<k = g-lzz-(k-1)}
)
1
1
&zz = mpeladl)
ki
1
O

Function z in this program iz not yet a list. The transtormation of
its definition into one that yields a list is o standard one (see section 6.4): we



199

introduce a function t, of type Nat=+L , with specification f-j-i=z-(j+i) .
Then, we can define z by z=1-0, or, in order to get rid of the caze analysis

in 2's definition, by 2=0; 1. In the definition of z-(j+1}, | occurs
only in z-) ond y-j; hence, using z+j=(z¢j}-0 and y-j={yj)-0 == cf.
section 6.11 -- | we provide f with parameters for z¢] and ydj, thus
moking parameter j itsell superfluous. I.e, 's specification now is;

(1) Ogin0gjas=yhjat=zd 2 faudid = z.(j+1+0)

Thus, we obtain the final version of our first solution,
program3 (new definition of z oniy):

z=0;ftyz |l f-{a;s)(b;t) = gb; fist
£ gk = { xk=a <+ k+1
[ xk#an0=sk - 0
[ x-k#an0ck o g-(22-(k-1}}
)

e conclude this section with a discussion of the time complexity of
program3. Evaluation of zt(j+1) takes 0O(j} time for the 4(j+1) operation,
plug | unfoldings of function 1 | plus the time needed to evaluate the elements
z:i . 0gigj, themselves. We have z-0=0 and z(i+1)=g-{z-i) . The farm
of the laiter formula suggests the use of omorfized complexity, as discussed
in section 7.1, to account for the evaluations of g-{z.i) , 0gi<| .

We use the theary developed in section 7.1. Let tk denote the number
of unfoldings of g needed to evaiuate gk ; let sk denote the omortized
cost of gk and let c be the credit function coupling s and t. le «¢
must be such that, for natural k :

c-k 0
c-(z-0) = 0 , ie. c:O=D
(s) g-k = tk+c{g-k) -k
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In order to conclude that evatumlion of the values =z ,0<gig),
requires 0(j) unfoldings of g, it suffices to show that s is 0O(1) for
some ¢ satistying the above requirements. From the recursive definition
of g we obtain the following recurrence relations for 1t

tkh = 1 , wk=av o=k
tle = L#t-{zz-(k-1)) . xk#anO0<k

We now derive -- this derivetion is due to L.A.M. Schoenmakers
[Sch]l —- , guided by the case analysis in g's definition:
« xk=a;

gk

= {(s),for x-k=a:t-k=1n gk=k+1 }
1+c-(kvl) - ook

< { aszume c-(k+1)-ck £ 1 (see below) }

» xk#FaaO=k:
sk
= {(s), for xk#a A O=k:t-k=1 A gk=0 }
1+c0-c+0
= { olgebra }

» xkgaal<k:
5k
{(s), for wk#a A 0<k; tk=1+t-(zz-(k-1)) A g-k =g-(z2-(k-1)) }
1+ t(zzo (k1)) + c-(g-(22-(k-1})) - -k
{ algebra , preparing for application of (s) }
1+ te(zz-(k-1)) + c-(g-(zz-(k-1))) - c-(z2+ (k1)) + c-(z2-(k-1)] - g-k
{ ()}
1+s-(zz-(k-1)) +e-(zz- (k-1)) - -k
5 { induction hypothesis }
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1+2#c{zz:(k-1)) - ek
= { assume c-{zz:(k=1)) - c+k g 2z:{k-1) -k (3ee below} }
3+ zze(k-1) -k
% {zz:(k-1) g k-1}
2
{end +)

In thiz derivation we have assumed that ¢ satisfies:
ck-el € k-1, 0gkAaDzgl

This and the above requirements for ¢ are met if we choose ¢ tfo be the
identity function: c-k=k for k, 0gk . With this ¢, we now have proved:

sk g 2
Moreover, we conclude, using () :
tk g 2+k-gk

In the above analysis we have ignored the contributions of expressions
x-k and zz-{k-1) . The element selections -k and -{k-1) will be eliminated
in the next section. The use of zz causes no problems either: because
k-1<j+1 we conctude that zt(j+2} depends, in the worst caze, on 224
onty. Expression zzt] | therefore, has time complexity 0(j) , and its contri-
bution to the time complexity of z4(j+2) also is 0() . We conclude that
program3 hos linear time complexity.

10.3 The sacond program

By means of progrom tronsformationg we eliminate the, inefficient,
expressions x:k and zz-(k-1} from program3. We use the technique
developed in section 6.11. We start with zz-(k«=1) .

Let [=zz-(k-1) ; if we would equip g with an additional parameter
that represents zz-(k-1) , we would need an expression for =zz-(l-1) as
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argument in the recursive application of g, where we have <k , Therefore,
using zz.({k-1) =rev-(zztk).0 ond rev-(zztl) =rev.-(zztk)é(k-1) , we equip
g with a parameter reprasenting rev-(zztk) . We call the function thus
obtained gl ; its specification is:

{gl} 0gkgjaCkijav=rev-(zztk] = glwvk=gk
By plugging this into program3 we obtain programd,
program4é:

z2=0;fyz [ Lla;e)(b;t) = glelrev-(zztb})-b ; fs-t
Il g1-v-k = { x-k=a +k+t
[ x-kpan D=k 5 0
0 x-k#an0<k » gli-(vb(k-1))+t
fi=v-0 i

From the previous section we know that the evaluation time of gk is
at most 2+k-gk . We now verify that the new expression wi(k-1} does not
disturb this, Let t-k be the contribution of this expression to the evaluation
time of g-k . Because wi(k-1} does not oceur in the first two alternatives of
g’'s definition, we have for these cases t-k=0; for the cose x-k#a A 0<k

we derive:
ek
= { vilk=1) takes k-t time}
ke=t+t-1
4 { induction hypothesis }
k-l+2+44-g4l

= { algebra , get=gk }
2+k-gk
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The elimination of expression zz-(k-1) from the definition of g
caused the introduction of expression rev-(zztb) in the application of g1,
i,e. in the definition of f -- one level higher, so o speak —— . We now try
ta apply the same transformation to eliminate rev-(zztb) . l.e. we provide 1
with an additional parameter representing rev-(zztb) = Let c=g-b ; recalling,
see (f)  that b=z and e=2.(j+1) , we conclude that the argument supplied
for this new parameter in the recursive application of f must be rev-(zztc) .
We have z-(j+1)gz-j+1 , 50 cgb+l bul not necessarily cgb . Hence, we
cannot express rev-(zztc) in terms of rev.(zzth) . Therefore, we use the
representation of zz by the pair [rev-(zzth), zzé¢b] : then, we have:

[rav.-{zz8c) zzde] = shift.(c-b)-[rev.(z2tb}, 224h]

S0, we equip f with a parameler representing this pair. Thus, we
cbtain function {1, with specification:

(fl}  Ogjns=ybjat=zéjab=zjazl=I[rev-(zztb) zz¢b] =3 fl.zlist=fs1.

The elimination of expression x-k can be dealt with in exactly the
same way, Observing that x-k=rev-(x*(k+1))-0 we provide gl with a new
parameter representing rev-{xt(k+1)) ; this gives rize to the introduction,
in f1, of a parameter representing [rev-(xt(b+1)} . x¥(b+1) ] . Leaving the
construction of the specifications of functions g2 and (2 as an exercise
io the reader, we obloin our second, and final, program. Function shift is
the same as the one discussed in section 6.11. Notice that the time complexity
of shift-{c-b) is O(|e-b|}) , and that this does not destroy the linear time
complexify of z |
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programb (again: definition of z onlyl:

z =03 t2[[x0],x¢11-[[],22]y-2
[ f2-xt-z1-{a;a)-(b;t) = ¢ ; f2-(shift-(g-b)x1)-{shift:(c-b)-21)-a-1

[ c = g2-{x1-0)-{z1-0)-b
& g2eusvek = { w-0=a kel
[ uwdtani=k = 0
[ u-0#an0c<k

5 g2-(ukd)+{vid)-t
[ l=vi0 & d=k=L ]

10.4 PApplications

With only littte explanation we show a tew applications of mpp . Al
these applications can be formulated as mpp-xe(x¥1) , for some suitable x .
Therefore, we discuss mpp-x-{x¥1) first. In this section, x is a fixed,
infinite list that accurs mainly as a global constant in our formulae.

10.4.0 ahout mpp-x-(xv1)

We recall the informal specification of mpp from seclion 10.1:

rmppexeys] = "the moximal length of any prefix of x that is a
suffix of y4j" |, 0%j
Far the special cose mpp-x-x this amounts to mpp-x-x:j=j , becouse x*

itself is both a prefix of x and a suffix of x4 . So, mppwx is not very
useful. We might, however, be interested in function g with specification:

g.j = "the maximal length of any prefix of x that is a proper
suffix of x4 " ., 15}
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where the proper suffixes of x4 oare those suffixes of x4j that are shorter
than j . Of course, this is meaningful for positive | only. Formalising this
we derive, lor j: 0<y;

g9

= { formal specification of g }
MAX i 0gi<j A xti=xb(j-ilti:i)

= { w¥(j-i) =wd2b(j-1-i} , for i,j:i<j}
(MAXi:0gig]-1 A xbi=ndl¥(j-1-i)4i: i}

= { specification of mpp }

mpp-x-{x¥1}-{j~1)
Hence, we have: g-j = mpp-x-(x+1)-{j-1) ; conversely, mpp-x-(x¥1)-j con
be interpreted as  "the maximal length of any prefix of x that is a proper
suffix of xt{j+1)" , 05 .
10.4.1 periodicity computation

The period of a, non-empty, finite list 5 of tength | is the least
divisor i of | such that s=(s4)i¥' | Because i is a divisor of | and
because s=(st)1 | this is o correct definition. We use i|j tor “i is a
divisor af " .

property 10.4.1.0: For finite list & of length j and for i satistying ilj :

g= (et = gb(j-i) =i

A tormal definition of p-j . denoting the period of x4j , 0<j , is:
pj = (MINi:O<ig) ailj A xM(j-i=xtjdizi) |, 0¢gj

We now derive:
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P

{ definition of p+j }
(MINi:0<ig]ailjnxt(-i)=xtidizi)

{ xtjdi = xdit(j-i) }

MNING 0cig] A il A xb(j=iy=xbir(j-i} 1)

{ dummy substitution i+j-i }
(MINi:0gi<ja (-illj Axtizxd(j-i)ticj-i)
= { calculus }

j - MAXi:0gic A (-idlf Axti=xd (=it i)

H

The farmula thus obtained resembles the specification of g, defined in the
previous section, very much. The main difference is the additional conjunct
(j-1)]j . With function f defined by: f-j=j=-g-j . we have the following lemma.

lemma 10.4.1.0:

fjli = prj=f
=(f1j) > pej=i

10.4.2 carré recognition

A finite list is a carré if it equals s+s , for some finite list s .

property 10.4.2.0: With p the function definad in the previous section:

|

"x4i is a carré” = (2ap-)) | ], 0<]

10.4.3 overlap recognition

A finite list 5 of length | is said to have overlap if

[Ei:j/2<i<j: shi=s4(j-1)} . We have: "xtj has overlop™ = gj>j/2. 0<] .



10.4.4 pattern matching

Let s, the pattern, be a finite lisl of length k and let y . the fext,
be an infinite list: the proposition "s occurs in y at posifion j* can be
tormalised as s=yjtk , for j, 0¢j. Let % be on infinite list satisfying
s=xtk ; then, we have;

s =y¥itk

= {s=xtk }
M=y (ke j-k) Mk

& { definition of MAX ; specification of mpp }
mppexey-(kri) =k

Similarly, we have: s#ybjtk & mpp-x-y-(k+j) <k . A problem is that
when mpp-x-y-(k+{} > k we can draw no conclusions about s=ybitk . We can,
however. circumvent this prablem by seeing to it that mpp-x-y-tk+}) gk . We
achieve thiz by exploitation of the freedom we have in choosing =k

mpp-xey (k+j) £ k

< { specitication of mpp , definition of MAX }
Akl g igherj: wbi#ub{lsj—idti)

= { dumpy substitution iek+1+i }
(AT 0gi<iz xMk+14i) #ydb(j—i-1)H{ke1+i) }

= { 0gk<kel+i: Leibniz ; (yblj-i-1})-k=y-{j-i-1+k) }
(A1:0g1<]: xk#y lj-i-1+k) )

& { catoulus }

(Ai:0gi: x-ke#y-i)

So, o condition implying mpp-x-y-(k+j) sk is (A 0gi: xk#y-i); i
iz satistied if we choose x-k=Vv , where v ("tick™) is a vatue not occurring
in y: v is a, so-called, sentinel, marking the end of pattern s . If v
does nol occur in g either, then x need not he an infinite list: evaluation
of mpp-x-y does not require evaluation of x+i for t:k<i. Hence, we
simply may take x=s#[V} and we obtain:
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g=ybjtk = mppoey(k+jl =k , 0g)

In this example, the recursive application mpp-x-0ed1) , in the
programs for mpp , can be interpreted as application of the pattern matching
process to the patlern itszeif: mppwx:{xv1) is the preprocessing part of the
Knuth-Morria-Pratt algorithm.

Preprocessing and pattern matching proper can even be combined,
Ohserving that x¥{k+1) is irrelevant we may choose x=s+[v]#y and use
mpp-x-{x+1) instead of mpp-x-y . We have -- observing that y=x¢idk --:

s=ybitk = mppexe(eb1)-(2xksf} =k |, Og]

The preprocessing part now corresponds to mppox{x¥i}t(k+1} whereas the
pattern matching proper corresponds to mppex(x¥1)4(k+1]) : there is no real
difference between the two parts.

10.5 Epilogue

We have developad a functional program with which a number of non-
triviat problems can be solved in linear time, Apparently, mpp is on essential
eomponent for a whole class of programs dealing with string recognition. We
discuss a few aspecis of this development in isolation.

We have taken the specification of mpp for granted, When we take,
however, the pattern matching problem as our starting point, ihe introduction
of mpp is not the most obvious choice. If we are interested, for finite tist s
ot length k and infinite list y, in the boolean values s=yjtk , 0gj, the
more obvious generalisation is: (MAXi:0gigk A sti=ybjhi: i), If and only
if this value is k we have s=y¥jtk . A disadvantage of this expression is
that it containg the length of s, which may give rise to more case analysis in
the program. The advantage of mpp's specification is that it does not depend
on the lengths ot the lists: it iz only slighily simpler than the akbove expression
but this slight simplication turns out to be of crucial importance. The price for
this, on the other hand, is the use of a sentinel to mark the end of the pattern.
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The derivation of program2 is quite sotisfactory. In particular, what
can be considered as the crucial idea behind the Knuth-Morris-Pratt algorithm
can ba written down, in isolation, as a short derivation in M-calculus. Apart
from this, the design of the program resembles derivations of programs for
other, so-called, segment problems.

Programz itself is quite nice too. The definition of z , which is the
essential part, is short and gimple; moreover, it hos a direct sequential counter-
part. Rs a matter of facl, program2 contains all relevant properties of the
functions involved. The derivation of these properties can be, ond therefore;
should be, independent of the decision whether the algorithm will be coded as
a functionel or as a sequential program,

The most laborious part of the design is the transformation of programz,
in a number of steps, into program5. This part (again) shows that program
transformations can be loborious but very effective. In our case, the trans-
formations serve to take into account several requirements regarding the use
af ligts tor the represeniation of seme of the functions involved. Thus, we have
shown that the problem, and with it a whole collection of similar problems,
can be solved in tinear time using list operations instead of (random access)
array operations, For those who care this may be a nice result.

This part of the game, however, has not much to do with functional
programming; o similar sequence of transformations can be applied to the
correspording sequential pregram, [t should be noted here that the absence
of arrays in functional-program notations is usually taken for granied, The
current example shows that one may have to go o long way to get rid of array
operations; as a matter of tfoct, so long a way that it becomes questionable
whether it should be done at all. Apparently, tor this kind of problems solutions
with arrays are to be preterred,

The transformation of programz into programb does not require difficult
heuristics: we have only used the standard technigue of introduction of addi-
tional parameters -~ notice, however, that part of the work has been done
already in section 6.11 =-- . In a recent paper by R.G5. Bird et ol. [Bir2] a
functionat program for the KMP algorithm is presented too. In this paper the
authors need to save the efficiency of their program by pulling a complicated
datastructure out of the hat.
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Finally, we are tempted to the conclusion that MN-calculus is an
effeclive tool for caleulations invelving (segments of} both finite and infinite
lists: it enables us to discuss lists without having to carry out the discussion
in terms of their elements. Here, o careful choice of the notation used turnes
out to be crucial [Gasl: only after the introduction of the ¢+ and ¢ operators
we discovered rules such as x¥itj =xt{i+ji .
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11 Epilogue

11.0 Uhat we have achieved

In this monograph we discussed a number of techniques for tunctional
programming and we used them to derive, in a calculational way, programs
for o number of problems. The main result of this work iz that o rather small
repertoire of simple techniques suffices for the systematic development of a
large variety of programs. In particular, the technique of generalisation by
abstraction fits very well in a coleulational style of programming. Further-
more, o relatively simple formalism, the semantics of which is only partially
defined, is sufficient for programming.

11.1 Functional programming

In some of the exomples we showed how functional progroms con be
transformed, with little effort, into sequential programs for the same problem.
Therefore, functional programming can be used in twe ways, namely as «a
design activity in its own right, the final products of which are (executable)
functional programs, or as the first phase in the development of programs to
be encoded in some other program notation. In the latter case, functional
programs, together with their specifications, form the starting point for what
we may catl the implementation phase of the development. We discuss this
in some detail.

A (recursive) function definition in our program notation fixes the
relation between the values of the function in different points of its domain.
The special form of the relation enables effective computation of the function
values. The relation places constraints on the order in which these values
must ba compuied, but it does not fix this order completely. The freedom thus
left can, in the implementation phase, be exploited in several ways. For
instance, we may choose an order that minimises the use of storage space,
ar we may use parallelism for the computation of unordered values [Hoo2l.

A more classical approoch io the design of sequential programs is as
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follows. Given postcondition x=F-N, for fixed natural N, we obtain, by
replacement of constant N by a variable, x=F-n A OgngN as a lenlative
invariant for a program of the following form:

n¥ =0, F0
{invariant: x=Fn A0gngN}
cdon#N = nx=n+l, F-(n+1) od
{x=Fnan=N, hence: x=F-N }

Nex!, we try to find suitable expressions for F-0 and F-(n+1), where,
because of the invariani, we are satisfied if we can express F-(n+1) in terms
of F-n. It remains, however, to be seen whether such expressions can be
found, In this respect, the decigion to use a program of the chove structure
must be considered ag premature. Moreover, if we are, for exomple, able to
express F-(2xn) in terms of F.-n -- see chapler 4 —— |, how do we exploit
thig in the above program?

We conclude that it is @ wise strategy to derive o sel of recurrence
relations first and to decide upon the order of the computations later.
Functional-pragramming techniques are well-suited for the derivation of
such relations. In most cases this is the harder (and more important) part
of the design.

By identitication of the relations between the values to be computed
we can also try lo discover to whal extent parallelism can be used for these
computations, M. Rem has designed o number of, so-called, syslolic arrays
in a way that resembles functional programming very much [Rem]. As a reault,
there is a maorked similarity between Rem's systolic-array programs and
functional programs for the some problem. When the recurrence relations are
sufficiently simple, the functional programs can be implamented quite easily
as systolic arroys: when, however, these relations are not so simple, the
tronstormation is far from trivial. This is a subject of further research,

11.2 The role of specifications
With respect o the proper rote of specifications we follow C.A.R. Hoare

who states [Hoa0l: "It iz essential that the notations used for ftormalization
of requirements should be mathemntically meaningful, but it would be unwise
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to place any other restriction upon them.” . R specification is the first
tormalisation ot a (programming) problem, Hence, by definition, we cannot
speak of the correctness, in the mathematical sense of the word, of a speci-
fication: we can only convince ourselves that o specification specifies the
right thing by interpreting its meaning, in an intormal way. Good specifications
are, therelore, as self-evident as possible.

Furthermore, a good specification defines only those properties of the
specified object that we are interested in, and nothing else. Mathematically,
this means that specifications should be as weak as posaible. This leaves us o
maximal freadom for the construction of o program: the weoker a specification
iz, the more programs satisfy it. In practice, some overspecification cannot
always be avoided. but we still should try to avoid it as much as possible.

On account of the above, we do not share the opinion that functicnal
programs are well-suited to be used as, so-called, execufable specificalions.
First, because programs contain information on how the specified objects can
be computed, programs are, by definition, always overspecitic, to an extent
that must be considered as undesirable: this may impose such a bias onto the
design that it becomes virtually impossible to derive algorithms that are not
refinernents of the algorithm denoted by the specificotion. Second, the use of
a program notation does not always yield the simplicity and clarity needed
to obtagin the required self-evidentness of the specitication. Examples of
nan-executable specifications can be found in chapters 6,7,8, and 9. These
examples show that equations, specifying the objects implicitly, sometimes
are clearer than explicit definitions of these objects, This is particularly the
case with representations of abstreet dotatypes: such representations are
specified in terms of the abstract valuss they represent. (Examples: 6.5,6.7,
68,7, and 9 )

11.3 The equivalence of computations

A program is meaningful only with respect to a specification. For a
given specification two programs may be considered as equivalent, with respect
to that specitication, if they both do or do not satisfy it. A consequence of
this attitude is that there is no point in discussing the equivalence of two
programs without taking into account their (common) specification.
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We iltustrate this with an example. We consider definitions of functions
f and g of the following form:

fx = {0gx=+F)
gx = (0gw»G)

Since these definitions provide no information whatsoever about the volues
of fo ond g for non-natural vatues of %, it is reasonable to assume
that such definitions can only have been derived from specitications stating
properties of the function for natural arguments only. By constructing such
o specification we express our deliberate decision not to be interested in f-x
for non-natural x . With respect to this specitication, f and g are equivaient
if (Ax:0gx: fox=gx) . Once we have laken this decision, we should not,
then, care cbout whether or not (-3} =g-(-3) : within the context of aur
specitication this question is irrelevant. Similarly, with respect to this
gpecification, function { iz also equivalent to function h defined by:

hew = (0gx > F
fx<0 = h{x-1)
)

fAlthough both 1-(-3) and h-(-3) are “undefined” ., we can think of an
implementation in which evaluation of {-{-3) terminates whereas evaluation
of h-{-3} does not: now, should these expressions be considersd as equal
or not? As before, the question is irrelevant,

This example shows lweo things. First, in order to answer questions
regarding undefined values, rather complicated denctational models tor the
pragram notation are needed. The above shows that this is unnecessary:
values are left undefined deliberately, because we are not interested in them,
We do not even need spacial names, such as L, for undefined values. Second,
the above exposes a serious drawback of program transformation systems. In
such a system. programs are transformed inte equivalent programs, without
taking into account the specification of the program one starts with. As a
result, the onty thing one can do in such a system is to prove the equivalence
of the programs in the strongest sense of the word. In the obove example, the
proof ohligation would be (Ax: Qex: f-x=g-x ) . which is unnecessarily hard.
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Samenvatting

Het is inmiddels algemeen bekend dat de correctheid van computerpro-
gramma's alleen kan worden acngetoond deor middel van wiskundige bewijzen.
Dit gegeven loat twee wmanieren van programmeren loe. Enerzijds kan men
eerst een programma ontwerpen om vervolgens te bewijzen dat het correct is.
Anderzijds kan men het gegeven dat de correctheid van het programma moet
worden bewezen als uitgangspunt nemen door programma en correctheidsbewijs
tegelijkertijd te ontwerpen. Het (heuristische} voordeel van deze benadering
is dat de bewijsverplichting nu als leidraad voor het ontwerp fungeert.

De laatste benadering blijkt zeer effectief te zijn. Het gelijktijdig
ontwerpen van programma én correctheidsbewijs wordt afleiden genoemd
en het wiskundig betoog oan de hand waarven de programmocode wordt
geconstrueerd een afleiding. Mits voldoende zorgvuldig geformuleerd vormt
de afleiding tevens het correctheidsbewijs. De ervaring leert dat afleidingen
ten minste een ordegroctte langer zijn dan de aldus ofgeleide progromma’s.
De hieruit vaortvioeiende wens afleidingen zo compact mogelijk, maar toch
voldoende gedetailleerd, te noteren heett in de taoiste 10 joar geleid tot een
calculationsle wijze van programmeren: programma's worden door middel
van tormulemanipulatie uit hun specificaties afgeleid.

Het doel von het aan dit proefschrift ten grondslag liggende onderzoek
was technieken te ontwikkelen voor het op calculationele wijze afleiden van
functionele programma’s. Het idee was dat dit niet al te moeilijk zou moeten
zijn, omdat functionele-programmanactatios meer dan notaties voor sequentigle
programma’s op "gewone” wiskundige formalismen lijken. Verder vroegen wij
ons of in welke mate functioneel programmeren van sequentieel programmeren
~= ook wel i/mperalief programmeren gengemd —— verschilt.

Dit proefschrift gaat over het afleiden van functionele programma’s;
het gaat niet over functionele programmeertalen noch over implementaties
hiervan, De in dit proefschrift gedefinieerde programmanotatie is niet het
onderwerp van de studie, maar een (onmisbaar) middel tot een doel, namelijk
programmeren. Voor dit doel volstaat het de gebruikie notatie axiomatisch
te definiéren: volledigheid is van ondergeschikt belang, zolang de oxioma's
toereikend zijn voor het spelen van een interessant programmeerspel.
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Dit proefgchrift bestaal uit drie delen. In het eerste deel =-- hoofd-
stukken 1, 2, 3 en 5 —— wordt een programmanolfatie ingsvoerd en wordt enige
theorie voor het gebruik ervan geformuleerd. De notatie is geinspireerd door
SASL maar is gedurende het onderzoek voortdurend aan de zich ontwikkelende
behoeften aangepast. De belangrijkste moraal van dit deel is dat de benodigde
theorie tamelijk eenvoudig is.

In het tweede deel -~ hoofdstukken 4 en 6 -- worden een aantal pro-
grammeertechnieken behandeld. De technieken in hoofdstuk 4 hebben betrekking
op recursie, generalisatie, tupelvorming en het gebruik von extra parameters.
Deze technieken zijn elementair: ze zijn eenvoudig en vrijwel altijd toepasbaar.
De techniek generolisatie door absiractie blijkt goed te passen bij een calcu-
lationele programmeerwijze: door formele manipulatie worden vaak expressies
verkregen die geringe {maar eszenliéle) verschillen vertonen; door van deze
verschillen te absiraheren kan een bruikbare generalisatie van het probleem
worden verkregen, Hoofdstuk & bevat technieken voor en voorbeelden van
programma’s waarin lijsten een rol spelen. Deze technisken worden afgeleid
met behulp van de technieken uit hoofdstuk 4 en de theorie uit hoofdstuk 5,

In het derde deel -- hoofdstulcken 7, 8, 9 en 10 —- passen we de
technieken uit het tweede deel toe op een viertal programmeerproblemen,
wadgronder een combinatorisch probleem en een patroonherkenningsprobteem,

Het belangrijkste resultaat van het verrichte onderzoek is dat een
betrekketijk klein repertoire van senvoudige technieken toereikend is voor het
op calculationele wijze afteiden van functionele programma’s. De afletdingen
in, bij voorbeeld, hoofdstukken 4 en 9 fonen bovendien aan dat verschillende
programma’s voor hetzelfde probleem met deze technieken vaok met geringe
extra moeite kunnen worden verkregen,

Bij het ontwerpen van sequentiéle programma’s kunnen we onderscheid
maken tussen het karakieriseren van de uit te rekenen waarden, en de relaties
daartussen, enerzijds en het kiezen van een volgorde waarin die waarden
zullen worden uitgerekend anderzijds. Voor het afleiden van deze relaties
kunnen functionele programmeringstechnieken met vrucht worden gebruikt;
aldus kan tunclioneel programmeren bijdragen aan een betere verkaveling
van de afleidingen van sequentiéle programma's.

Er zijn aanwijzingen dat functioneel programmeren ook kan worden
gebruikt bij het ontwerpen van, zogenaamde, sysielische arrays, Dit is een
onderwerp van verder onderzoek.
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Zij C een verzameling en < een partigle ordening op € zodanig
dat (C, <) weli-founded is. Dan geldt voor alle verzamelingen V,
functies {: V= C en predicaten P: V3Bool (met xeVayeV):

(Ax::Px) &« (Ax:: Pax & (Ay:ty<tx:Pyl)

Met behulp van de vorige stelling kan een aonzienlijk eenvoudiger en
korter bewijs van de invariantiestelling worden afgeleid dan dat van
R.J.M. van Gasteren.

A.J.M. van Gasteren
On the shape of mathematical argumenis
proefschrift, Technische Universiteit Eindhoven, 1988,

Voor het bewijzen van eigenschappen van (functies op) recursieve
datatypen is structurele inductie in het algemeen ontoereikend.

R.5. Bird, F. Wadler
Iniroduction to functional programming
Prentice Hall International, Heme! Hempstead, 1988,

De in hoofdstuk & van [0] gegeven voorbeelden, ler motivering van
de noodzaak van op domeintheorie gebaseerde modellen voor de
r-caleulus, zijn misleidend en niet ter rake,

{0} J.E. Stoy
Denotational Semantics: The Scatl-Strachey Approach to
Programming Language Theory
The MIT Press, Cambridge Massachusetts, 1877,



De in dit proefsehrift behandelde productiviteitsstelling veer oneindige
tijsten vertoont galijkenis met de contractiestelling van Banoch veor
voliedige metrische ruimten,

Het onfwerpen van een betere programmeertaal heeft alleen zin wanneer
hieraan een betere wijze von programmeren ten grondslag ligt, in enige
zin van het woord "betere”,

In informaticacurricula dient expliciet aandacht te worden besiteed aan
het ontwerpen van formele specificaties.

{Natuurlijie) taal is een artefact en derhalve voor verbetering vatboar,
Prascriptieve taalkunde heeft dan ook bestaansrectt.

De Von Neumann machine is zo gek nog niet.



