
0

import Text .ParserCombinators.Parsec
import Data.List

1

A HWEB file is composed of a prologue and a sequence of sections.

type Web = (Prologue, [Section])

2

The HWEB file begins with the prologue, which may be empty. It is ignored
by HTANGLE and copied essentially verbatim by HWEAVE, so its function is
to provide any additional formatting instructions that may be desired by the
HTML output. Indeed it is customary to begin a HWEB file with a prologue
that imports or defines scripts and styles.

type Prologue = Text

3

Each section has two parts:

• A HTML part, explaining what is happening in the section.

• A Haskell part, containing a piece of code to be output by HTANGLE.
This piece should be short enough that a reader can readily perceive its
structure and easily understand it as a unit.

The two halves of a section must appear in this order; i.e. the HTML commen-
tary must come before the Haskell code. Either part may be empty.

type Section = (Title,Commentary ,SectionInfo,Code)
type Title = Text
type Commentary = Text
type SectionInfo = (Name, IsFile)
type Name = Maybe Text

0

type IsFile = Bool
type Code = [Either Text Link]
type Text = String

4

The construct “ @ < section name@ > ” can appear any number of times in the
code part of a section: Subsequent appearances indicate that a named section
is being linked to rather than defined.

type Link = Text

5

web :: Parser Web
web = do

prol ← prologue
secs ← many1 section
return (prol , secs)

prologue :: Parser Prologue
prologue = do

txt ← manyTill anyChar (try (string "@*"))
return txt

6

The control code @* denotes the beginning of a new section. The title of the
new group should appear after the @* followed by a period.

The Haskell part of an unnamed section begins with @h . This causes HTAN-
GLE to append the code to the first order program text.

The control code @ < introduces a section name which consists of HTML and
extends to the matching @ > . The whole construct is conceptually a Haskell
element. The behaviour differs depending on the context: A @ < appearing in
the commentary part attaches the following section name to the current section.
The closing @ > should be followed by “=”.

1

The control code @(introduces a special kind of section: a file section. The
code in such a section will be output to a separate file, the name of which is
found between the @(and the @ > .

section :: Parser Section
section = do

title ← manyTill anyChar (try (char ’.’))
txt ← manyTill anyChar (try (char ’@’))
info ← section info
cod ← code
return (title, txt , info, cod)

section info :: Parser SectionInfo
section info = do

c ← anyChar
case c of

’<’→ do {name ← manyTill anyChar (try (string "@>=")); return (Just name,False)}
’(’→ do {name ← manyTill anyChar (try (string "@>=")); return (Just name,True)}
’h’→ return (Nothing ,False)

7

In the code part, @ < indicates that a named section is being used—its Haskell
definition is splicd in by HTANGLE.

code :: Parser Code
code = do

txt ← manyTill anyChar (try (char ’@’))
c ← anyChar
case c of

’*’→ return [Left txt]
’<’→ do

link ← manyTill anyChar (try (string "@>"))
rest ← code
return ((Left txt) : (Right link) : rest)

8

pretty :: [(Int ,Section)]→ String
pretty [] = ""
pretty (s : ss) = pretty s s ++ pretty ss

2

pretty s :: (Int ,Section)→ String
pretty s (n, (title, commentary , info, code)) =

let name =
case info of

(Nothing ,)→ ""
(Just txt ,)→ txt

in "<h2>" ++ show n ++ ". " ++ title ++ "</h2>" ++
"<p id=\"" ++ name ++ "\">" ++ commentary ++ "</p>" ++
(if name 6≡ ""

then "<h3>" ++ "<" ++ name ++ "> ::=" ++ "</h3>"
else "") ++

"<pre>" ++ prettify code code ++ "</pre>"

prettify code :: Code → String
prettify code [] = ""
prettify code ((Left txt) : code) = clean txt ++ prettify code code
prettify code (Right link : code) = "" ++ link ++ "" ++ prettify code code

clean [] = []
clean (’<’ : xs) = "<" ++ clean xs
clean (’>’ : xs) = ">" ++ clean xs
clean (x : xs) = x : clean xs

9

weave :: IO String
weave = do

result ← parseFromFile web "test0.hweb"
case result of

Right (limbo, sections)→ return (limbo ++ pretty (zip [0 . .] sections))

hweave :: FilePath → FilePath → IO ()
hweave in file out file = do

result ← parseFromFile web in file
case result of

Right (limbo, sections)→ do
writeFile out file $

"<head>" ++ limbo ++ "</head>" ++
"<body><div id=\"content\">" ++ pretty (zip [0 . .] sections) ++ "</div></body>"

Left err → print err

hweave :: FilePath → IO ()
hweave in file = hweave in file $ takeWhile (6≡ ’.’) in file ++ ".shtml"

3

htangle :: FilePath → String → IO ()
htangle in file ext = htangle in file $ takeWhile (6≡ ’.’) in file ++ ext

10

The main idea of HTANGLE is to make a compiler-ready Haskell program out
of individual sections, named and unnamed. This is done as follows:

1. The Haskell parts of unnamed sections are collected, in order; this con-
stitutes the first-order approximation to the compiler-ready code. (There
should be at least one unnamed section, otherwise there will be no pro-
gram.)

2. An association list of section names and corresponding code is built. If
the same name has been given to more than one section, the Haskell text
for that name is obtained by putting together all the Haskell parts in the
corresponding sections. This feature is useful, for example, in a section
named “Module imports”, since one can then import a module in whatever
section its exports are used.

3. All section names that appear in the first-order approximation are replaced
by the Haskell parts of the corresponding sections, and this substitution
process continues until no section names remain.

unnamed code :: [Section]→ Code
unnamed code ss = concat [cod | (, , (name, is file), cod)← ss,name ≡ Nothing]

named code :: [Section]→ [(Name,Code)]
named code ss = (compress ◦ sort) [(name, cod) | (, , (name, is file), cod)← ss,name 6≡ Nothing , is file ≡ False]

file sections :: [Section]→ [(Name,Code)]
file sections ss = [(name, cod) | (, , (name, is file), cod)← ss,name 6≡ Nothing , is file ≡ True]

compress [(x , y)] = [(x , y)]
compress ((x , ys) : (x ′, ys ′) : zs) =

if x ≡ x ′

then compress ((x , ys ++ ys ′) : zs)
else (x , ys) : compress ((x ′, ys ′) : zs)

tangle :: [(Name,Code)]→ Code → Code
tangle db xs =

4

let xs ′ = (concat ◦map (visit db)) xs
in if no links xs ′ then xs ′ else tangle db xs ′

visit db (Left txt) = [Left txt]
visit db (Right link) = case lookup (Just link) db of

Nothing → error $ "Section named " ++ link ++ " not defined!"
Just cod → cod

p (Left txt) = True
p (Right link) = False

no links ys = all p ys

htangle :: FilePath → FilePath → IO ()
htangle input file output file = do

result ← parseFromFile web input file
case result of

Right (limbo, sections)→ code out output file sections
Left err → print err

code out :: FilePath → [Section]→ IO ()
code out output file sections = do

let cod = tangle (named code sections) (unnamed code sections)
let (names, codes) = unzip (file sections sections)
let codes ′ = map (tangle (named code sections)) codes
writeFile output file ((concat ◦map (λ(Left txt)→ txt)) cod)
output (zip names codes ′)

output :: [(Name,Code)]→ IO ()
output [] = do {putStrLn "Output: Done"; return ()}
output ((Just name, cod) : xs) = do

writeFile name $ (concat ◦ (map (λ(Left txt)→ txt))) cod
putStrLn $ "Output: " ++ name
output xs

test0 = htangle "test0.hweb" "test0.hs"

main = test0

5

