fusc

In Programming: The Derivation of Algorithms Anne Kaldewaij gives us the recurrence

$$fusc.0 = 0, fusc.1 = 1$$

$$fusc.(2*n) = fusc.n$$

$$fusc.(2*n+1) = fusc.n + fusc.(n+1)$$
 for $n \ge 0$

and asks us to derive a program for the computation of ~fusc.N~ , $~N\geq 0~$.

* *

The postcondition of our program is

$$R: \quad r = fusc.N$$

Our next task is to choose an invariant. The shape of the recurrence suggests as invariant the conjunction of

$$\langle fusc.n + fusc.(n+1) \rangle$$

$$Pn: 0 \le n \le N$$

where

$$\langle x \rangle \equiv fusc.N = x$$

Kaldewaij hints that we should compute fusc.78, so let us do so. We can compute this in either a depth-first or breadth-first manner. We choose the latter as it is simpler (we do not have to store fusc values for later use).

$$fusc.78$$
= { }
$$fusc.39$$
= { }
$$fusc.19 + fusc.20$$
= { }
$$fusc.9 + fusc.10 + fusc.20$$
= { }

```
fusc.9 + 2*fusc.10
= { }
             fusc.4
                                                                                        + 	ext{ } 	e
= { }
          fusc.4 + 3*fusc.5
= { }
            fusc.2 + 3*fusc.5
= { }
           4*fusc.2 + 3*fusc.3
= { }
           4*fusc.1 + 3*fusc.3
= { }
          7*fusc.1 + 3*fusc.2
= { }
             10
```

This calculation suggests we generalise the invariant to

$$P: \langle a*fusc.n + b*fusc.(n+1) \rangle$$

which we initially establish with n,a,b:=N,1,0 . We are heading for a program of the form

$$n,a,b:=N,1,0$$
 ;

$$\mbox{\bf do}\quad n\neq 0 \quad \rightarrow$$

$$\mbox{"Decrease}\quad n \quad \mbox{under invariance of}\quad P \ \mbox{"}$$

$$\mbox{\bf od}$$

* *

The shape of fusc suggests we investigate two cases: even.n and odd.n . We observe

```
[[ Context: even.n ]
   a*fusc.n \\ + b*fusc.(n+1)
= { property of fusc; algebra }
   a*fusc.(n \ {f div} \ 2) + b*fusc.((n+1) \ {f div} \ 2) + b*fusc.(((n+1) \ {f div} \ 2) + 1)
 = \{(n+1) \operatorname{\mathbf{div}} 2 = n \operatorname{\mathbf{div}} 2 ; \text{ follows from } \operatorname{\mathit{odd}}.(n+1) \}
   a * fusc.(n \operatorname{div} 2) + b * fusc.(n \operatorname{div} 2) + b * fusc.((n \operatorname{div} 2) + 1)
 = { algebra }
   (a+b)*fusc.(n 	extbf{div} 2) + b*fusc.((n 	extbf{div} 2) + 1)
= \nabla a, n := a + b, n \operatorname{\mathbf{div}} 2 \nabla
  a * fusc.n + b * fusc.(n+1)
][
```

and

```
[ Context: odd.n ]
  a * fusc.n + b * fusc.(n+1)
= { property of fusc; algebra }
   a*fusc.(n \operatorname{\mathbf{div}} 2) + a*fusc.((n \operatorname{\mathbf{div}} 2) + 1) + b*fusc.((n+1) \operatorname{\mathbf{div}} 2)
= \{ (n+1) \operatorname{div} 2 = (n \operatorname{div} 2) + 1 ; \text{ follows from } even.(n+1) \}
   a*fusc.(n 	extbf{div} 2) + a*fusc.((n 	extbf{div} 2) + 1) + b*fusc.((n 	extbf{div} 2) + 1)
= { algebra }
  a * fusc.(n \operatorname{div} 2) + (a + b) * fusc.((n \operatorname{div} 2) + 1)
= \nabla b, n := a + b, n \operatorname{div} 2 \nabla
   a * fusc.n + b * fusc.(n+1)
][
```

Hence our solution

```
\begin{array}{lll} n,a,b &:=& N,1,0\\ ; \ \mathbf{do} & n\neq 0 & \rightarrow\\ & \mathbf{if} & even.n & \rightarrow & a,n &:=& a+b,\ n\ \mathbf{div}\ 2\\ & [] & odd.n & \rightarrow & b,n &:=& a+b,\ n\ \mathbf{div}\ 2\\ & \mathbf{fi} & \mathbf{od}\\ ; & r:=b \end{array}
```

The proofs of termination and maintenance of Pn under $n := n \operatorname{\mathbf{div}} 2$ are standard hence we omit them.

* *

Acknowledgement

Jeremy Weissmann provided close supervision and invaluable guidance in the composition of this note.

 $E. \ Emmanuel \ Macaulay \\ \ eric@mathmeth.com$

10 February 2007